摘要
因生物制药废水中残留有对微生物有较强抑制性作用的抗生素,使得难以直接对其进行生化处理,因而需要先对该种废水进行有效的预处理,来破坏或降解其中的残留药物分子及活性,提高废水的可生化性,以利于废水的后续生化处理。本研究以高浓度洁霉素实际生产废水为研究对象,针对其具体特点,结合工程的应用性,作者提出了水解酸化预处理的方法。观察水解酸化预处理该废水的可行性以及不同因素对废水水解酸化处理的效果,并且有针对性的投加经济无害的材料来强化水解酸化对该废水的处理效果,同时,研究并分析了预处理后不同的生化处理阶段的效果,以期为实际工程应用提供一定的理论和实际指导。
水解酸化可以对高浓度洁霉素生产废水进行预处理。试验控制了反应器 pH为 6、7.5 和 9 这三种情况。结果显示,在稳定运行时期,结合实际工程应用,控制 pH=7.5 时,洁霉素废水水解酸化的效果最好,pH=9 次之,pH=6 最差。在最佳 pH(7.5)条件下,COD 的平均去除率为 11.50%,最高为 11.65%;出水挥发酸和酸化率分别稳定在 148.3~152.8mmol/L、10.74~12.60%之间;ORP 稳定为-200mV;B/C 从 0.34 升到 0.60.pH=7.5 和 9 的条件下水解酸化后续生化处理阶段的 COD 去除效果均明显优于 pH=6,但是,由于 pH=9 的水解酸化出水进后续生化处理时需进行 pH 调节的量大,药剂消耗量增大,费用增高,故综合考虑,选择最佳的 pH 值为 7.5;且洁霉素废水经过水解酸化预处理后的最佳方法为厌氧+好氧阶段, COD 总去除率为 83.63%.研究了不同进水 COD 浓度及反应时间对水解酸化 COD 去除效果的影响。
结果显示,在最佳 pH(7.5)条件下,反应器运行初期随着进水 COD 浓度的增大(17000~20748.8~24681.2mg/L),COD 去除率呈先上升后下降的趋势(13.0~33.6~29.3%),但因制药废水毒性的积累,以及高浓度的运行(23000mg/L以上),COD 去除率下降,当反应器内微生物与有毒物质的积累达到平衡状态时,COD 去除率稳定为 11%.随着反应时间的增加,COD 的去除率在反应的前 4h内因吸附作用,迅速增大,之后增加缓慢,当反应时间为24h时到达最大值14.9%,因此,最佳反应时间为 24h 时。
零价铁(ZVI)和生物填料的投加均能强化高浓度洁霉素废水水解酸化的处理效果。试验在三个平行的反应器中进行:投加零价铁的反应器(R1)、投加生物填料的反应器(R2)以及普通反应器(R0)。结果显示,ZVI 和生物填料的分别投加,既能提高反应器抗水质冲击负荷的能力,又能明显提高水解酸化反应器的处理效果。在稳定运行时期,R1 和 R2 的 COD 去除率、酸化率和出水 B/C均明显高于 R0,ORP 均低于 R0;R1 和 R2 的出水 B/C 提高比分别为 68.38%和57.83%,均明显高于 R0 的 48.38%.反应器 R1 和 R2 的出水后续生化阶段的 COD去除效果均明显优于 R0.且洁霉素废水经过水解酸化预处理后的最佳处理阶段为厌氧+好氧,COD 总去除率为:R1,98.69%;R2,93.37%.零价铁和生物填料分别对水解酸化的强化作用,提高了废水的可生化性,为后续的生化处理提供良好的条件,并使后续处理效果得到明显提高。
关键词:洁霉素生产废水;水解酸化;零价铁;生物填料
Abstract
Because of residual antibiotics in the biopharmaceutical wastewater have stronginhibitory effect on microorganisms, making it difficult to directly on the biochemicaltreatment, therefore, it is essential to take effective pretreatment to damage ordegradation of residual drug molecules and antibiotic activity for this wastewater, andimprove the wastewater biodegradability, which favored the followed biochemicaltreatment. In this study, taking lincomycin production wastewater as the researchobject, in view of its specific characteristics and the engineering application, thepretreatment method of hydrolysis acidification was raised by the author. Observe thefeasibility of hydrolytic acidification pretreatment of lincomycin wastewater and theeffect of different factors on the wastewater hydrolytic acidification treatment, andtargeted economic harmless material to strengthen the effect of hydrolysisacidification of the waste water treatment, at the same time, the effect of differentbiochemical treatment after pretreatment are studied, in order to provide certaintheory for the practical engineering application and practical guidance.
Hydrolytic acidification can be pretreatment of high-concentration lincomycinproduction wastewater. The experiment control reactor pH of 6, 7.5 and 9. Resultsshow that the stable operation period, combined with the actual engineeringapplication, the best removal efficiency of lincomycin wastewater hydrolyticacidification can be obtained when pH = 7.5, pH = 9 times, pH = 6 is the worst. Theaverage COD removal rate is 11.5%, and the highest is 11.65%, under the conditionof optimum pH(pH=7.5)。 The volatile acid(VFA) concentration of effluent and theacidification degree(AD) respectively stable tendency in 148.3~148.3 mmol/L and148.3~12.6%, ORP stability around -200 mV, the B/C of the wastewater increasedfrom 0.34 to 0.6. The COD removal efficiency of the subsequent biochemicaltreatment after hydrolysis acidification under the conditions of pH = 7.5 and 9 isbetter than pH = 6. However, because the quantity of adjusting pH is big when theeffluent of pH = 9 hydrolytic acidification into the subsequent biochemical treatment.
And the reagent consumption increases, higher cost, so comprehensive consideration,selecting the best pH = 7.5 in engineering application. And the best biochemicaltreatment process after hydrolysis acidification pretreatment for the lincomycinwastewater is anaerobic + aerobic stage, The total removal rate of COD is 83.63%.
The COD removal efficiency of different influent COD concentration andreaction time on the hydrolysis acidification are studied. Results show that under thecondition of optimum pH(7.5), early reactor operation, with the increase of influentCOD concentration increase(17000~20748.8~24681.2mg/L), COD removal rateshow a trend of falling after rising first (13~33.6~29.3%)。 But because of theaccumulation of pharmaceutical wastewater toxicity, as well as the operation of thehigh concentration(23000mg/L above), COD removal rate decreased. Eventually theCOD removal rate steady at around 11% when the microbes is balanced with theaccumulation of toxic material in the reactor. With the increase of reaction time,because of the early adsorption effect, the COD removal rate increased rapidly in thereaction of the first 4 h, then increase slowly. The maximum COD removal rate is14.9% when the hydraulic reaction time is 24 h. Therefore, optimal reaction time is24 h.
Zero-valent iron (ZVI) and biological fillers were added to strengthen the resultof hydrolysis acidification of lincomycin wastewater treatment. The experiments arecarried out in three reactors parallel in parallel: adding the zero-valent iron in thereactor (R1), adding the filler of bioreactors (R2), and a ordinary reactor (R0)。
According to the results of ZVI and biological fillers were added, which can improvethe ability of the reactor anti water shock loading, and can significantly improve theprocessing effect of hydrolysis acidification reactor. During the period of stableoperation, the COD removal rate, AD and the B/C of effluent of the reactor R1 andR2 are significantly higher than that of R0, ORP below R0. The B/C increase rate ofR1 and R2 effluent is 68.38% and 57.83%, respectively, were significantly higherthan that of R0 (48.38%)。 The COD removal efficiency of the subsequentbiochemical treatment after R1 and R2 stage are better than that of R0. And the bestbiochemical treatment process after hydrolysis acidification pretreatment for thelincomycin wastewater is anaerobic + aerobic stage, The total removal rate of COD is:
R1, 98.69%; R2, 93.37%. Therefore, the ZVI and biological packing enhancedhydrolysis acidification, respectively, improved the wastewater biodegradability, toprovide good conditions for the subsequent biochemical treatment, and improve thesubsequent processing effect obviously.
Key words: lincomycin production wastewater; hydrolysis acidification;zero-valent iron; biological packing
目录
摘要
Abstract
1 绪 论
1.1 生物制药废水概述
1.1.1 生物制药生产工艺及废水来源
1.1.2 生物制药废水水质特点
1.2 生物制药废水处理现状
1.2.1 物理处理方法
1.2.2 化学处理方法
1.2.3 生化处理方法
1.3 水解酸化技术
1.3.1 水解酸化技术概述
1.3.2 水解酸化技术研究现状
1.3.3 生物膜法在水解酸化中的应用
1.4 零价铁(zero valent iron,ZVI)技术
1.4.1 零价铁技术概述
1.4.2 零价铁技术研究现状
2 研究的目的、内容及技术路线
2.1 研究目的与意义
2.2 研究内容
2.3 技术路线
3 水解酸化预处理洁霉素废水的试验研究
3.1 试验材料与方法
3.1.1 试验废水来源及水质
3.1.2 试验装置
3.1.3 分析项目、方法及仪器设备
3.1.4 试验方法
3.2 水解酸化污泥的培养与驯化结果及分析
3.2.1 水解酸化污泥培养结果及分析
3.2.2 水解酸化污泥驯化结果及分析
3.3 pH 值对洁霉素废水水解酸化的影响
3.3.1 pH 值对洁霉素废水水解酸化的效果及分析
3.3.2 水解酸化接后续生化试验效果及分析
3.4 容积负荷对洁霉素废水水解酸化的影响
3.5 水力停留时间对洁霉素废水水解酸化的影响
3.6 本章小结
4 零价铁和生物填料强化洁霉素废水水解酸化的研究
4.1 试验材料与方法
4.1.1 废水来源及水质
4.1.2 试验装置
4.1.3 分析项目、方法及仪器设备
4.1.4 试验方法
4.2 零价铁强化洁霉素废水水解酸化的效果及分析
4.2.1 COD 的变化
4.2.2 pH 值的变化
4.2.3 VFA 的变化
4.2.4 ORP 的变化
4.2.5 出水 B/C 的变化
4.3 生物填料强化洁霉素废水水解酸化的效果及分析
4.3.1 COD 的变化
4.3.2 pH 值的变化
4.3.3 VFA 的变化
4.3.4 ORP 的变化
4.3.5 出水 B/C 的变化
4.4 水解酸化接后续生化试验效果及分析
4.5 本章小结
5 结论与建议
5.1 结论
5.2 创新点
5.3 建议
参考文献
致谢