·ºËØ»¯ÐÞÊÎÓëÉíÌåµ÷¿Ø¼°¼²²¡µÄ¹Øϵ(3)
À´Ô´£ºÑ§ÊõÌà ×÷ÕߣºÖìÀÏʦ
·¢²¼ÓÚ£º2017-04-12 ¹²13341×Ö
¡¡¡¡Éñ¾ÍËÐÐÐÔ¼²²¡ÈçÅÁ½ðÉ»ò°¢¶û×Ⱥ£Ä¬Êϲ¡ÓÖ»òÕ߶à¾Û¹È°±õ£°·Öظ´¼²²¡ÈçºàÍ¢¶ÙÊϲ¡¶¼ÒÔµ°°×Öʾۼ¯ÌåµÄ¶¾ÐÔÀÛ»ýΪÌØÕ÷£¬´Ó¶øÆÆ»µÏ¸°ûÎÈ̬ÓëÉñ¾Ôª¹¦ÄܶøÖ²¡¡£¶ø¾¡¹Ü²»Í¬¼²²¡Öе°°×Öʾۼ¯ÌåµÄ×é·ÖÓ붨λ¶¼²»¾¡Ïàͬ£¬ËüÃǶ¼¶Ô¿¹·ºËØ¿¹ÌåÓÐÃâÒß»îÐÔ£¬²¢ÇÒÔ½À´Ô½¶àµÄÑо¿Ö¤Ã÷£¬·ºËØÒÀÀµµÄµ°°×øÌå½µ½âϵͳ£¨Ub-proteasome system, UPS£©µÄÒì³£Óëµ°°×Öʾۼ¯ÌåµÄÐγɽôÃÜÏà¹Ø´Ó¶ø²ÎÓëÉñ¾ÍËÐÐÐÔ²¡±ä[64,65].
¡¡¡¡
¡¡¡¡£¨1£©·ºËØ»¯ÐÞÊÎÓëÅÁ½ðÉÊϲ¡¡£ÅÁ½ðÉÊϲ¡£¨Parkinson's disease£©ÒÔ½øÐÐÐԵĺÚÖʶà°Í°·Éñ¾ÔªÉ¥Ê§ÎªÌØÕ÷£¬´Ó¶øµ¼Ö¼¡Èâ²ü¶¶£¬Õð²üÓëÔ˶¯³Ù»º¡£Â·Ò×ÊÏСÌ壨Lewy bodies£©£¬Ö÷ÒªÓÉa-Í»´¥ºËµ°°×£¨a-synuclein£©×é³ÉµÄµ°°×Öʾۼ¯Ì壬ÕýÊÇÅÁ½ðÉÊϲ¡µÄÕï¶ÏÌØÕ÷£¬¶ø´ó¶àÊýµÄ·Ò×ÊÏСÌåÖеÄa-Í»´¥ºËµ°°×¶¼´¦ÓÚµ¥·ºËØ»¯»òË«·ºËØ»¯ÐÞÊεÄ״̬ÏÂ[ 6 6 ].ÔÚÅàÑøµÄ¶à°Í°·ÄÜϸ°ûÖУ¬·ºËØ»¯ËƺõÄÜÔö¼Óµ°°×Öʾۼ¯³Ì¶ÈÓëa-Í»´¥ºËµ°°×µÄÉñ¾¶¾ÐÔ[67].µ«ÊÇÓÐȤµÄÊÇ£¬·ºËØ»¯µÄЧ¹û¾ßÓÐλµãÌØÒìÐÔ£¬²»Í¬Àµ°±Ëáλ µã µÄ ·º ËØ »¯ ¿É ÒÔ ÏÔ ×Å Ôö Ç¿ »ò Õß ÒÖ ÖÆ Ô ÏË Î¬ µÄÐγÉ[68].
¡¡¡¡
¡¡¡¡£¨2£©·ºËØ»¯ÐÞÊÎÓë°¢¶û×Ⱥ£Ä¬Êϲ¡¡£°¢¶û×Ⱥ£Ä¬Êϲ¡£¨Alzheimer's disease£©ÊÇÀÏÄêÈËÖÐ×î³£¼ûµÄÉñ¾ÍËÐÐÐÔ¼²²¡£¬»¼Óд˲¡µÄ²¡ÈË»á³öÏÖ½øÕ¹ÐԵļÇÒäɥʧÓëÈÏÖªÕÏ°£¬²¢×îÖÕ·¢Õ¹Îª³Õ´ô¡£Éñ¾Ôª°ûÍâµÄb-µí·ÛÑùµ°°×°ßºÍ°ûÄÚµÄÉñ¾ÔÏËά²ø½áÊÇ°¢¶û×Ⱥ£Ä¬Êϲ¡²¡È˵IJ¡ÀíÌØÕ÷Ö®Ò»£¬¶ø¶þÕßÕýÊÇÓɸ߶ÈÁ×ËữÓë·ºËØ»¯µÄtauµ°°××é³ÉµÄµ°°×Öʾۼ¯Ìå¡£´Ó°¢¶û×Ⱥ£Ä¬Êϲ¡²¡È˵ÄÄÔ×éÖ¯±ê±¾Óëtauµ°°×²¡±äµÄСÊóÄ£Ð͵ÄÑо¿Öз¢ÏÖ£¬ UPSЧÂʵĽµµÍÒÔ¼°Êܵ½ÒÖÖƵÄ×ÔÊÉ-ÈÜøÌåͨ·ÓëtauÔÚÍ»´¥Ä©¶ËµÄÒì³£ÀÛ»ýÃ÷ÏÔÕýÏà¹Ø[69,70].
¡¡¡¡
¡¡¡¡3½áÂÛÓëÕ¹Íû
¡¡¡¡
¡¡¡¡¾¡¹ÜÐí¶à·ºËØ»¯ÐÞÊεÄÔÔòµÃµ½Á˲ûÃ÷£¬µ«·ºËØ»¯ÐÞÊεÄÉú»¯»úÖÆÓëÉúÀí¹¦ÄÜԶδµÃµ½³ä·ÖÀí½â£¬ÀýÈ磬·ºËØ»¯±¾ÉíÈçºÎ±»µ÷¿ØÒÔ¼°·ºËØ»¯ÓëÆäËûPTMÈçÁ×Ëữ¡¢ÒÒõ£»¯Ö®¼äµÄÏ໥¹Øϵ¡£±¾ÎļòÒª½éÉÜÁË·ºËØ»¯µÄһЩϸ°ûÉúÎïѧ¹¦ÄܺͷºËØ»¯Òì³£²ÎÓëµÄÁ½ÖÖÖØÒª¼²²¡-°©Ö¢ÓëÉñ¾ÍËÐÐÐÔ¼²²¡£¬¾¡¹ÜÓÉÓÚƪ·ùËùÏÞ£¬Ðí¶à·ºËØ»¯²ÎÓëµÄÉúÎïѧ¹ý³ÌÓë¼²²¡Î´ÄÜÏêϸ²ûÊö£¬µ«±¾ÎĶÔÁ˽ⷺËØ»¯µÄ¹¦ÄÜÓëÒâÒåµÄ»ù±¾ÂÖÀªÓÐËùñÔÒæ¡£
¡¡¡¡
¡¡¡¡Î´À´µÄÑо¿»á½øÒ»²½¾Û½¹ÓÚ·ºËØ»¯ÐÞÊÎ×÷Ϊһ¸ö¶¯Ì¬ÍøÂ磬ÈçºÎ²ÎÓëÉúÀíѧ½ø³ÌÓÖÔõÑùÓ°ÏìÉúÎïѧ¹¦ÄÜ¡£ÀýÈ磬²»Í¬µÄE2sÓëE3sÖ®¼äµÄÁªÏµ£¬²»Í¬µÄ·ºËØ»¯ÐÞÊÎÖÖÀࣨµ¥·ºËØ»¯¡¢¶à·ºËØ»¯ÒÔ¼°¶à¾Û·ºËØ»¯£©ÒÔ¼°²»Í¬µÄ¶à¾Û·ºËØ»¯Á´£¨Á¬½Óͨ¹ýMet1,Lys6, Lys11, Lys27, Lys29, Lys33, Lys48ºÍLys63£©ÈÔÐè½øÒ»²½Ñо¿[71].Óë´Ëͬʱ£¬¶ÔÓÚ·ºËØ»¯ÐÞÊεĽøÒ»²½Àí½âÒ²±Ø½«Íƶ¯Ò»ÏµÁÐÏà¹Ø¼²²¡µÄÑо¿ÓëÖÎÁÆ£¬½üÆÚ£¬ÏßÐÔ·ºËØ»¯Í¨Â·£¨linear ubiquitination pathway£©ÓëÑ×Ö¢¡¢Ö×ÁöÓë×ÔÉíÃâÒßÐÔ¼²²¡µÄÏ໥¹ØϵȡµÃÁ˾޴óÍ»ÆÆ£¬²¢ÓÐÍûΪÉÏÊö¼²²¡µÄÖÎÁÆÌṩÐÂ˼·[72].Òò´Ë£¬Ëæ×ŶԷºËØ»¯ÐÞÊεÄÉîÈëÑо¿ÓëÖÎÁƼ¼ÊõµÄ²»¶Ï·¢Õ¹£¬¶Ô·ºËØ»¯Í¨Â·½øÐвÙ×÷½«³ÉΪһÖÖ¸»ÓÐÇ°¾°µÄ¸ß¶ÈÌØÒìÐÔµÄÖÎÁÆ·½·¨¡£
¡¡¡¡
¡¡¡¡²Î¿¼ÎÄÏ×£º
¡¡¡¡
¡¡¡¡1 Schwartz D C, Hochstrasser M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci, 2003, 28:321–328
¡¡¡¡2 Herrmann J, Lerman L O, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res, 2007, 100: 1276–1291
¡¡¡¡3 Muratani M, Tansey W P. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol, 2003, 4: 192–201
¡¡¡¡4 Shaid S, Brandts C H, Serve H, et al. Ubiquitination and selective autophagy. Cell Death Differ, 2013, 20: 21–30
¡¡¡¡5 Ulrich H D, Walden H. Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol, 2010, 11: 479–489
¡¡¡¡6 Vucic D, Dixit V M, Wertz I E. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol CellBiol, 2011, 12: 439–452
¡¡¡¡7 Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci, 2012, 125: 265–275
¡¡¡¡8 Goldstein G, Scheid M, Hammerling U, et al. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probablyrepresented universally in living cells. Proc Natl Acad Sci USA, 1975, 72: 11–15
¡¡¡¡9 Deshaies R J, Joazeiro C A. Ring domain E3 ubiquitin ligases. Annu Rev Biochem, 2009, 78: 399–434
¡¡¡¡10 Liu F, Walters K J. Multitasking with ubiquitin through multivalent interactions. Trends Biochem Sci, 2010, 35: 352–360
¡¡¡¡11 Xu P, Duong D M, Seyfried N T, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomaldegradation. Cell, 2009, 137: 133–145
¡¡¡¡12 Rieser E, Cordier S M, Walczak H. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci, 2013, 38:94–102
¡¡¡¡13 Nijman S M, Luna-Vargas M P, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell, 2005, 123: 773–786
¡¡¡¡14 Sowa M E, Bennett E J, Gygi S P, et al. Defining the human deubiquitinating enzyme interaction landscape. Cell, 2009, 138: 389–403
¡¡¡¡15 Petroski M D, Deshaies R J. Function and regulation of cullin-ring ubiquitin ligases. Nat Rev Mol Cell Biol, 2005, 6: 9–20
¡¡¡¡16 Schreiber A, Stengel F, Zhang Z, et al. Structural basis for the subunit assembly of the anaphase-promoting complex. Nature, 2011, 470:227–232
¡¡¡¡17 Sullivan M, Morgan D O. Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol, 2007, 8: 894–903
¡¡¡¡18 Mocciaro A, Rape M. Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J Cell Sci, 2012, 125: 255–263
¡¡¡¡19 Chau V, Tobias J W, Bachmair A, et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science, 1989,243: 1576–1583
¡¡¡¡20 Glotzer M, Murray A W, Kirschner M W. Cyclin is degraded by the ubiquitin pathway. Nature, 1991, 349: 132–138
¡¡¡¡21 Thrower J S, Hoffman L, Rechsteiner M, et al. Recognition of the polyubiquitin proteolytic signal. EMBO J, 2000, 19: 94–102
¡¡¡¡22 Jin L, Williamson A, Banerjee S, et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell, 2008,133: 653–665
¡¡¡¡23 Baboshina O V, Haas A L. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by26S proteasome subunit 5. J Biol Chem, 1996, 271: 2823–2831
¡¡¡¡24 Matsumoto M L, Wickliffe K E, Dong K C, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specificantibody. Mol Cell, 2010, 39: 477–484
¡¡¡¡25 Williamson A, Wickliffe K E, Mellone B G, et al. Identification of a physiological E2 module for the human anaphase-promoting complex.Proc Natl Acad Sci USA, 2009, 106: 18213–18218
¡¡¡¡26 Reggiori F, Pelham H R. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J, 2001, 20:5176–5186
¡¡¡¡27 Galan J M, Haguenauer-Tsapis R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J, 1997, 16:5847–5854
¡¡¡¡28 Huang F, Kirkpatrick D, Jiang X, et al. Differential regulation of EGF receptor internalization and degradation by multiubiquitination withinthe kinase domain. Mol Cell, 2006, 21: 737–748
¡¡¡¡29 Geetha T, Jiang J, Wooten M W. Lysine 63 polyubiquitination of the nerve growth factor receptor Trk A directs internalization andsignaling. Mol Cell, 2005, 20: 301–312
¡¡¡¡30 Duncan L M, Piper S, Dodd R B, et al. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules.EMBO J, 2006, 25: 1635–1645
¡¡¡¡31 Joazeiro C A, Wing S S, Huang H, et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-proteinligase. Science, 1999, 286: 309–312
¡¡¡¡32 de Melker A A, van der Horst G, Calafat J, et al. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptorassociated throughout the endocytic route. J Cell Sci, 2001, 114: 2167–2178
¡¡¡¡33 Sigismund S, Woelk T, Puri C, et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA, 2005, 102:2760–2765
¡¡¡¡34 Sigismund S, Argenzio E, Tosoni D, et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable fordegradation. Dev Cell, 2008, 15: 209–219
¡¡¡¡35 Kazazic M, Bertelsen V, Pedersen K W, et al. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits.Traffic, 2009, 10: 235–245
¡¡¡¡36 Sancar A, Lindsey-Boltz L A, Unsal-Kacmaz K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints.Annu Rev Biochem, 2004, 73: 39–85
¡¡¡¡37 Hoeijmakers J H. Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. MechAgeing Dev, 2007, 128: 460–462
¡¡¡¡38 Huang T T, D'Andrea A D. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol, 2006, 7: 323–334
¡¡¡¡39 D'Andrea A D. The fanconi road to cancer. Genes Dev, 2003, 17: 1933–1936
¡¡¡¡40 Wang X, Andreassen P R, D'Andrea A D. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. MolCell Biol, 2004, 24: 5850–5862
¡¡¡¡41 Garcia-Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell,2001, 7: 249–262
¡¡¡¡42 Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387: 296–299
¡¡¡¡43 Zilfou J T, Lowe S W. Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol, 2009, 1: a001883
¡¡¡¡44 Jain A K, Barton M C. Making sense of ubiquitin ligases that regulate p53. Cancer Biol Ther, 2014, 10: 665–672
¡¡¡¡45 Broemer M, Tenev T, Rigbolt K T, et al. Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell, 2010, 40:810–822
¡¡¡¡46 Hu S, Yang X. Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem, 2003,278: 10055–10060
¡¡¡¡47 Salvesen G S, Duckett C S. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol, 2002, 3: 401–410
¡¡¡¡48 Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAPinhibition. Cell, 2000, 102: 33–42
¡¡¡¡49 Schwartz A L, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu RevPharmacol Toxicol, 2009, 49: 73–96
¡¡¡¡50 Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature, 2009, 458: 438–444
¡¡¡¡51 Richardson P G, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med, 2003, 348:2609–2617
¡¡¡¡52 Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drugresistance in human multiple myeloma cells. Cancer Res, 2001, 61: 3071–3076
¡¡¡¡53 Vogelstein B, Kinzler K W. Cancer genes and the pathways they control. Nat Med, 2004, 10: 789–799
¡¡¡¡54 Wade M, Li Y C, Wahl G M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer, 2013, 13: 83–96
¡¡¡¡55 Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-Tr CP: tipping the scales of cancer. Nat Rev Cancer,2008, 8: 438–449
¡¡¡¡56 Schmidt M H, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol, 2005, 6: 907–918
¡¡¡¡57 Gnarra J R, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet, 1994, 7: 85–90
¡¡¡¡58 Kanno H, Kondo K, Ito S, et al. Somatic mutations of the von Hippel-Lindau tumor suppressor gene in sporadic central nervous systemhemangioblastomas. Cancer Res, 1994, 54: 4845–4847
¡¡¡¡59 Maxwell P H, Wiesener M S, Chang G W, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors foroxygen-dependent proteolysis. Nature, 1999, 399: 271–275
¡¡¡¡60 Xu L, Lubkov V, Taylor L J, et al. Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr Biol, 2010, 20:1372–1377
¡¡¡¡61 Kim S E, Yoon J Y, Jeong W J, et al. H-Ras is degraded by Wnt/beta-catenin signaling via beta-Tr CP-mediated polyubiquitylation. J CellSci, 2009, 122: 842–848
¡¡¡¡62 Baker R, Lewis S M, Sasaki A T, et al. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. NatStruct Mol Biol, 2013, 20: 46–52
¡¡¡¡63 Sasaki A T, Carracedo A, Locasale J W, et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstreameffectors. Sci Signal, 2011, 4: ra13
¡¡¡¡64 Bennett E J, Bence N F, Jayakumar R, et al. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic proteinaggregates precedes inclusion body formation. Mol Cell, 2005, 17: 351–365
¡¡¡¡65 Lam Y A, Pickart C M, Alban A, et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc Natl Acad Sci USA,2000, 97: 9902–9906
¡¡¡¡66 Tofaris G K, Razzaq A, Ghetti B, et al. Ubiquitination of alpha-synuclein in lewy bodies is a pathological event not associated withimpairment of proteasome function. J Biol Chem, 2003, 278: 44405–44411
¡¡¡¡67 Lee J T, Wheeler T C, Li L, et al. Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic celldeath. Hum Mol Genet, 2008, 17: 906–917
¡¡¡¡68 Meier F, Abeywardana T, Dhall A, et al. Semisynthetic, site-specific ubiquitin modification of alpha-synuclein reveals differential effectson aggregation. J Am Chem Soc, 2012, 134: 5468–5471
¡¡¡¡69 Tai H C, Serrano-Pozo A, Hashimoto T, et al. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease isassociated with dysfunction of the ubiquitin-proteasome system. Am J Pathol, 2012, 181: 1426–1435
¡¡¡¡70 Wang Y, Martinez-Vicente M, Kruger U, et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. HumMol Genet, 2009, 18: 4153–4170
¡¡¡¡71 Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol, 2011, 12: 295–307
¡¡¡¡72 Walczak H, Iwai K, Dikic I. Generation and physiological roles of linear ubiquitin chains. BMC Biol, 2012, 10: 23
Ïà¹Ø±êÇ©£º