大多数药物存在不良反应、血药浓度波动大等现象,基因药物( 特别是小干扰 RNA) 还存在快速降解的风险。为解决这类问题,研究者们选择各种各样的化学类或生物类载体去运载药物[1].在众多的药物载体中,红细胞因其自身的独特性质备受关注。红细胞是血液中数量最多且寿命最长的细胞。正常的成熟红细胞无核、无细胞器,呈双凹圆碟形,直径 7 ~ 8 μm,中央最薄处仅约1 μm,这种特殊的结构有利于增大其表面积以便进行物质交换。[2].红细胞具有可塑变形性,在全身血管中循环运行时,经过变形才能通过口径比它小的毛细血管和血窦孔隙。红细胞膜存在渗透脆性,在低渗溶液中红细胞可发生溶血,利于物质的交换[3],红细胞膜本身适合在血管内运输。
红细胞直接作为载体,用于运载小分子药物和蛋白质、核酸等大分子药物的研究已广泛展开。此外,制备保持完整功能的红细胞膜包封纳米粒作为药物载体的研究也取得了一定进展。本文综述了红细胞作为运载工具输送药物的研究情况,另外,着重介绍两种新型的红细胞膜载药系统---红细胞膜包裹纳米粒( RBC-NP) 和红细胞膜纳米海绵的最新研究进展。
1 红细胞作为药物载体的发展历程
早在 1953 年,已有科学家尝试用红细胞运载化学物质。随后有人成功将相对分子质量 10 ~250 kD 的右旋糖酐类载入红细胞。而直到 1973年,科学家们才开始采用红细胞做为药物载体,并于 1979 年首次以红细胞载体( carrier erythrocytes)来描述运载药物的红细胞[4].最先应用红细胞转运的是各种酶类,如乙醛脱氢酶[5]、谷氨酸脱氢酶[6]等。经过 30 多年发展,红细胞已应用于输送不同性质的药物,用于治疗肿瘤、心脑血管疾病、各类炎症等。
2 红细胞作为药物载体的特点
红细胞作为药物载体主要有以下优势: 降解不会产生有毒或有害物质,红细胞的粒径及形状相同,提供相对稳定的内环境,各种化学物质和酶都可包裹在红细胞膜内,防止内源物质降解运载的药物,可调整药物的药代动力学和药效学,保持血浆内药物浓度的稳定,延长药物的全身作用时间,减少药物的不良反应等[7].
2. 1 延长药物在体内的半衰期
正常红细胞的寿命为 120 d 左右,其体内循环时间远高于普通药物载体。将药物用红细胞负载后可显着延长其体内半衰期,提高药物疗效。将抗肿瘤药物长春新碱( MTX) 、甲氨蝶呤( VCR) 采用红细胞单一负载或复合负载后,可显着提高药物抗肿瘤活性,延长药物作用时间。其中 MTX + VCR 的双载红细胞对 K562 细胞 48 h的抑制率为( 68. 63 ± 2. 76) % ,显着高于 MTX 或VCR 单载红细胞( P < 0. 05)[8-10].连燕舒[11]以红细胞运载吗啡( M-RBC) 用于手术后镇痛,实验组术后无痛时间为( 15. 7 ± 5. 6) h,远高于对照组( 3. 2 ±2. 3) h,明显延长了吗啡的镇痛时效,且 M-RBC 半衰期为( 6. 48 ± 1. 56) h,与文献报道吗啡体内半衰期 2. 5 ~3 h 相比显着增加。核磁共振检查一般采用超顺磁氧化铁颗粒( SPIO) 和超小型超顺磁氧化铁颗粒 ( USPIO) 作为对比剂。Antonelli等[12]用红细胞运载 SPIO 作对比剂,注射后 24 h血液内铁离子浓度仍接近检测限,该对比剂血液中寿命可被延长至 12 d.
2. 2 良好的生物相容性和可降解性,减少不良反应。
天然红细胞为机体固有成分,可通过代谢完全降解为无毒产物,作为运载体在体内不会引起其他不良反应。聚氧乙烯蓖麻油( Cremophor) 常添加于紫杉醇注射液中作增溶剂,但易引起感染、过敏等不良反应。Harisa 等[13]尝试以红细胞作为药物载体运载紫衫醇,替代 Cremophor 的使用。载药的红细胞各种生理特性并无显着差异,可作为紫衫醇的药物靶向输送载体。
2. 3 增加药物在体内的稳定性,降低免疫原性。
红细胞可形成一个隔离空间以保护运载的物质,使药物不受内源性因素的影响而过早失活和降解,提高药物在体内的稳定性。此外,亦可减少外源性大分子( 如基因物质、蛋白等) 引起的免疫反应,是运载大分子药物的理想工具[14].
2. 4 增加药物的靶向性
红细胞因衰老或其他原因造成膜表面性质变化,经过脾和肝时可被网状内皮系统( RES) 的巨噬细胞识别、吞噬,因此红细胞可作为天然的 RES 靶向给药载体。已有研究将干扰素 α-2b 用红细胞担载后用于 RES 靶向给药[15].为增加红细胞被识别能力,Chiarantini 等[16]将反义肽核酸载入红细胞后,诱导红细胞表面的带三蛋白凝集并固定化,使之成为自体免疫球蛋白 G( IgG) 的识别、结合位点,从而被巨噬细胞内吞,最终抑制了巨噬细胞内一氧化氮合酶( iNOS) 和环氧化酶 2( COX-2) 的表达。
除 RES 靶向外,红细胞载体还可实现其他部位靶向。化疗药物在正常组织器官的分布积累是导致其不良反应的重要原因,磁化红细胞载体是解决这一问题的新手段。有报道将氧化铁纳米粒通过生物素-亲和素方法偶联到红细胞表面,或将四氧化三铁纳米粒载入红细胞内,制成红细胞磁化载体来运载多柔比星[17-18].磁化红细胞本身生理特性并无明显改变,但在外磁场的控制下可将药物准确输送到肿瘤部位。Cinti 等[19]将超顺磁纳米粒载入红细胞内,并以病毒血凝素糖蛋白对红细胞膜表面进行修饰,构建一种新型红细胞磁化载体。该磁化载体到达靶部位后能高效地与肿瘤细胞融合并释放药物,用其运载地西他滨,给药剂量仅为常规化疗剂量的 10%.
2. 5 延长药物释放时间,保持血药浓度稳定
红细胞膜是具有生物活性的半透膜,药物被载入红细胞后可实现缓慢持续释放,与传统给药方式相比,能明显减少血药浓度的波动。Alanazi 等[20]用红细胞负载伯氨喹用于疟疾的治疗,载药后的红细胞可实现 48 h 的药物持续释放,但膜上谷胱甘肽( GSH) 的含量显着降低,使载药后的红细胞更易被氧化。Bossa 等[21]将地塞米松的前药地塞米松-21-磷酸盐( DEX 21-P) 载入红细胞内,DEX 21-P先在酶的作用下去磷酸化生成地塞米松,再通过自由扩散作用释放到红细胞外,如此给药一次便可维持 3 ~4 周的治疗浓度。
2. 6 负载各类物质进行递送
红细胞载体适用范围广,无论是大分子药物还是小分子药物,大多可被红细胞运载,在适当的载药条件下可较大程度地保持红细胞的活性和功能。Harisa 等[22]用红细胞负载降血脂药物普伐他汀,探究不同包封条件对红细胞载药率及其生理特性的影响,结果显示在 0. 6% NaCl、普伐他汀质量浓度为 10 mg/mL 下孵育60 min 可得到最大载药率,且红细胞的生理特性基本无变化。Favretto 等[23]则研究了用 3 种方法将不同相对分子质量的酶载入红细胞的情况,结果显示,氯丙嗪浸泡法和脂质体融合法,相较于低渗透析法,可提高载药率减少不良反应。Shi 等[24]利用二硬脂酸磷脂酰乙酰胺将 IgG 连接于红细胞膜上,这种方法可显着提高整个红细胞载体的稳定性,且有利于药物的靶向运输。