摘 要: 近年来,因兼具基因修饰和传统药物的双重特点,核酸药物已逐渐成为精准生物医学和疾病治疗的热点。为进一步推动我国核酸药物行业创新发展,采用定量分析和定性分析相结合方法,对国内外核酸药物获批/授权、市场和研发情况进行分析,揭示了全球ASO、siRNA、RNA aptamer及mRNA等4大类核酸药物的产业发展态势,系统梳理了我国支持核酸药物创新发展的政策与措施,明确未来的技术主攻方向和应用潜力。面对国内基因治疗的迫切需求及核酸药物创制的严峻形势,研究提出推动源头创新、完善成果转移转化机制和营造良好竞争环境等对策建议。
关键词: 核酸药物; 市场; 对策建议;
Abstract: In recent years, due to the dual characteristics of genetic modification and traditional drugs, nucleic acid drugs have gradually attracted tremendous attention in the field of precision biomedicine and disease treatment. In order to further promote the innovation and development of nucleic acid drug industry of China, a combination of quantitative analysis and qualitative analysis have been used to analyze the situation of nucleic acid drugs of approval/authorization, market and research at domestic and abroad. The results showed the global R&D status and industry development trends of four major categories of nucleic acid drugs, including ASO, siRNA, RNA aptamer and mRNA. Besides, policies and measures to support the innovation and development of nucleic acid drugs in China, and the main direction of future technology and application potential have been sorted out and analyzed. Facing the urgent domestic demand for gene therapy and the severe situation in the innovation of nucleic acid drugs, countermeasures and suggestions have been put forward to promote innovation at the source, improve the mechanism for transfer and transformation of results, and create a good competitive environment.
Keyword: Nucleic acid drug; Market; Countermeasures;
脱氧核糖核酸(Deoxyribonucleic acid,DNA)和核糖核酸(Ribonucleic acid,RNA)是所有生命体遗传信息的载体。自1953年Watson 和Crick发现了DNA双螺旋结构后,揭开了核酸功能研究的新篇章[1,2]。随着分子生物学的快速发展,研究人员发现某些DNA/RNA并非都被转录或翻译为蛋白质,却在生命活动中发挥着重要的调控作用,如启动子、增强子、核酶、信使RNA(Messenger RNA,mRNA)、小RNA(Micro RNA,miRNA)、小干扰RNA( Small interfering RNA,siRNA)等[3]。为此,针对不同种类核酸的功能和作用机制开展具有疾病治疗功能的核酸药物研究成为当前新药开发的热门领域[4]。与在蛋白层面发挥药理作用的传统小分子化学药和抗体类药物不同,核酸药物高度依赖碱基互补配对原则参与基因转录和翻译过程中,高效特异性地调控致病靶基因或靶RNA[5]。因此,具有治疗效率高、药物毒性小、特异性强和应用领域广等突出优点的核酸药物,有望成为继小分子化学药和抗体类药物后第三大类型药物,未来开发和应用前景广阔。
目前,核酸药物主要包括反义寡核苷酸(Antisense oligonucleotide,ASO) 、小干扰RNA(siRNA)、核酸适配体(RNA aptamer)及信使RNA(mRNA)等 4大类。1998年,全球第一个核酸药物、第一款ASO药物福米韦生钠(Fomivirsen sodium)[6]获批,2004年第一款RNA aptamer药物哌加他尼钠Pegaptanib[7]获批;2018年第一款siRNA药物帕替斯垣Patisiran [8]获批上市。此外,还有众多药物处于临床前和临床试验的各个阶段。为进一步推动核酸药物行业发展,本文对全球核酸药物的市场及研发情况进行了深入分析,重点研究了国内核酸药物的研发情况,提出促进我国核酸药物持续健康发展的对策建议,以期为国家主管部门和行业从业人员提供决策参考。
1 、国外核酸药物市场情况
1.1、 获批/授权情况
表1 列出了当前全球13款获批的核酸药物,其中ASO药物8个,siRNA药物4个,Aptamer药物1个。另有2款针对新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19)的mRNA疫苗获得美国食品药品监督管理局(Food and Drug Administration,FDA)的紧急使用授权(Emergency use administration,EUA)。
1.1.1、 ASO药物
反义核酸药物(ASO)是一种单链寡核苷酸。1998年,Ionis Novartis 研发的抗巨细胞病毒(Cytomegalovirus,CMV)药物Fomivirsen获FDA批准上市。作为第一款由21个核苷酸构成的ASO药物,其通过与特定mRNA(IE2)结合抑制CMV部分蛋白表达,从而调控病毒基因的表达达到治疗的效果[6]。后来高效抗逆转录病毒疗法(Highly Active Anti-Retroviral Therapy)的出现大幅降低了患者的数量,2002 和2006年分别取消了该药物在欧洲和美国的市场授权。2013年,Ionis Genzyme Kastle研发的治疗纯合子家族性高胆固醇血症的Mipomersen获FDA批准。其通过与Apo b-100 mRNA 结合抑制ApoB-100 蛋白(载脂蛋白)的表达,从而显着降低人体低密度脂蛋白胆固醇、低密度脂蛋白等指标[9]。但由于存在肝毒性等副作用限制了其临床上的使用。2016年,Sarepta 研发的用于治疗杜氏肌营养不良症(Duchenne muscular dystrophy,DMD)的Eteplirsen获FDA批准。DMD患者由于体内DMD基因突变,而不能正常表达功能性抗萎缩蛋白(Atrophy protein),Eteplirsen通过与该蛋白前信使RNA(Pre-mRNA)的外显子51(Exondys 51)特异性结合,去除外显子51,恢复下游部分基因的正常表达,转录翻译得到部分抗肌萎缩蛋白,从而达到治疗的效果[10]。
Nusinersen是由Spinraza开发的用于治疗脊髓性肌萎缩症(spinal muscular atrophy,SMA)的ASO药物,于2016年获FDA批准。SMA 患者由于运动神经元生存基因1(Survival motor neuron gene,SMN1)突变无法产生足够的SMN 蛋白,Nusinersen 通过与SMN2 Pre-mRNA外显子7结合,保护其不被剪切,使患者产生更多的SMN 蛋白,从而改善症状[11]。虽然该药物存在呼吸系统感染和便秘等不良反应,但突出的疗效是其顺利获批上市的关键因素。2018年,Tegsedi 开发的用于治疗成人遗传性转甲状腺素蛋白淀粉样变性(hereditary transthyretin-mediated amyloidosis,hATTR)Inotersen获FDA批准。其通过与野生型和突变型的TTR mRNA结合,抑制TTR蛋白生成,从而降低TTR 淀粉样沉积物的逐渐积累[12],但临床应用中存在血小板减少、肾小球肾炎等不良反应。2019年,由Sarepta开发的用于治疗杜氏肌营养不良症(DMD)获FDA批准,与Eteplirsen作用机制相同,作用位点变为外显子53[13]。同年,由Ionis and Akcea联合开发用于治疗家族性高乳糜微粒血症(Familial chylomicronemia syndrome,FCS)的Volanesorsen获得欧洲药品管理局(European Medicines Agency,EMA)批准。它通过抑制载脂蛋白C-Ⅲ(ApoC-Ⅲ)生成来调控甘油三酯代谢,但也存在降低血小板水平的副作用[14]。
Defibrotide是Jazz开发的一种具有纤溶酶特性的寡核苷酸混合物,包含90%DNA单链和10%DNA双链。于2013年获EMA批准上市,随后获FDA批准用于治疗严重肝静脉闭塞病(Severe hepatic veno-occlusive disease,sVOD)。目前,sVOD的病理生理学机制尚不完全清楚,可能是造血干细胞移植中,局部产生的细胞因子引发炎症和促进血栓形成,进而引起内皮细胞损伤。而Defibrotide作用机制也是复杂、非特异性和存在争议的,尚未完全清楚。学术界形成的共识是Defibrotide可以提高纤溶酶活性,增加纤溶酶原激活物,促使血栓调节蛋白上调表达,减少血管性血友病因子和纤溶酶原激活物抑制剂的表达而达到治疗的效果[5,15]。
1.1.2 、siRNA和Aptamer药物
siRNA药物是一种长约21-23个碱基对的双链RNA。Patisiran是由Alnylam 开发用于治疗hATTR 的第一款siRNA药物,于2018年获FDA批准。与Inotersen作用机制不同,其通过脂质纳米颗粒(Lipid nanoparticle LNP)的递送系统,与表达野生型和突变型TTR mRNA结合诱导基因沉默,减少TTR蛋白产生,从而改善淀粉样变性的积累[16]。但其使用前需使用糖皮质激素、对乙酰氨基酚以及抗组胺剂以减少相关不良反应的发生。2019年,同样由Alnylam 研发的用于成人急性肝卟啉症(Acute hepatic porphyria,AHP)治疗药物Givosiran获FDA批准。Givosiran通过N-乙酰半乳糖胺(N-Acetyl-D-galactosamine,GalNAc)偶联载体递送,诱导编码氨基酮戊酸合酶1(aminolevulinate synthase 1,ALAS1)基因沉默,减少氨基酮戊酸(Aminolevulinate,ALA)和胆色素原的生成,降低卟啉及其前体的积累,从而达到治疗效果[17]。2020年,Alnylam 开发用于治疗儿童和成年人原发性I型高草酸尿症的Lumasiran获FDA批准。其同样由GalNAc偶联载体递送,通过诱导编码羟基酸氧化酶(Hydroxyacid oxidase 1,HAO1)mRNA的基因沉默,降低体内乙醇酸氧化酶(Glycolate oxidase,GO)生成,从而降低乙醇酸以及草酸盐的生成[18]。2020年12月,由Novartis和Alnylam联合开发的用于治疗成人高胆固醇血症或混合血脂异常的Inclisiran获EMA批准。不同于Mipomersen,其通过结合前蛋白转化酶枯草杆菌蛋白酶/kexin9型(Proprotein convertase subtilisin/kexin type 9, PCSK9) mRNA,抑制PCSK9蛋白生成,达到治疗的效果,且一年仅注射两次即可显着降低患者低密度脂蛋白胆固醇水平[19]。
不同于siRNA,Aptamer药物是一种折叠成特殊三维结构的短单链寡核苷酸。Pegaptanib是由Valeant开发的用于治疗湿性年龄相关性黄斑变性(wet age-related macular degeneration,wAMD)第一款Aptamer药物,于2004年获FDA批准。Pegaptanib通过空间结构与血管内皮生长因子(Vascular endothelial growth factor,VEGF)结合抑制血管生成达到治疗效果[7]。由于疗效不突出和同类药物竞争激烈,市场销售不尽人意。
表1 全球核酸药物获批情况
1.1.3 、mRNA疫苗
为有效应对COVID-19 疫情,mRNA疫苗的研发被提上日程,也取得了较大的进展。截至2020年底,获得美国FDA紧急使用授权的两款疫苗均为mRNA疫苗,BNT162b2[20]和mRNA-1273[21]在Ⅲ期临床实验中显示对COVID-19的保护效力达到95.0%和94.1%,主要不良反应为轻中度,严重不良事件发生率较低,初步表明疫苗具有较高的有效性和安全性,如表2所示。目前,BNT162b2疫苗已获英国、加拿大、巴林、沙特阿拉伯、新加坡和墨西哥等国家批准紧急使用,全球最大规模的疫苗接种行动正式启动。
表2 全球mRNA疫苗获授权情况
1.2 、市场情况
得益于突出的疗效,目前已经获批的多款核酸药物在全球市场取得了一定的成功。代表药物是ASO药物Nusinersen,用于治疗脊髓性肌萎缩症(SMA),2019年实现全球销售收入20.97亿美元,截至2019年底累计销售额为47亿美元。与此同时,获批上市的两款siRNA药物Patisiran和Givosiran也都取得了极好的销售成绩,2019年上市第一年Patisiran销售额就高达1.66亿美元。据Evaluate Pharma和 BCG 统计分析,2019年全球核酸药物的市场规模为19.19亿美元,预计2018-2024年年复合年均增长率将达到35%,从2018年的14.21亿美元增长到2024年的86亿美元。
图1 2018-2024年全球核酸药物市场规模及预测
Fig.1 Market size and forecast of global nucleic acid drug between 2018 and 2024
Source: Evaluate Pharma/ Boston Consulting Group/ China Galaxy Securities
从公司角度看,目前全球核酸药物市场主要被美国Ionis公司、美国Sareptae公司 和 英国Alnylam制药公司占据。Ionis拥有Fomivirsen、Mipomersen、 Nusinersen、Inotersen、Volanesorsen等五大ASO系列产品,其中Fomivirsen、Mipomersen分别于1998和2013获批上市,当前均已退市,另三款ASO药物仅2019年就为Ionis带来了高达22.82亿美元的全球销售收入。Sareptae公司虽然只有Eteplirsen和Golodirsen两款ASO药物,且均针对杜氏肌营养不良症(DMD),但2019年仍分别实现全球销售收入3.81亿美元和13万美元。拥有Patisiran、Givosiran、Lumasiran等三款上市siRNA药物的Alnylam公司同样表现不俗,2019年获得全球销售总额超1.66亿美元。据Datamonitor Healthcare和Wang等[22]预测,2020年Nusinersen、Eteplirsen和Patisiran三款药物全球销售额有望达到30.3亿美元。从全球销售额来看,相比siRNA,ASO药物市场反馈更好;随着研究的深入和药物递送技术等关键难题的突破,siRNA药物仍然拥有非常好的前景。
图2 2017-2020年Patisiran、Nusinersen和Eteplirsen全球市场规模及预测
Fig.2 Market size and forecast of Patisiran, Nusinersen and Eteplirsen between 2017 and 2020
Source: Cortellis/ Datamonitor Healthcare/ China Galaxy Securities
1.3 、研发情况
1.3.1、瓶颈问题和关键技术难点
核酸药物针对基因转录后水平治疗,候选靶点丰富,尤其一些蛋白靶点难以成药的基因,开发和应用潜力巨大。但如何避免快速被降解并精准作用靶标发挥疗效,是目前所有核酸药物研发和产业化普遍面临的瓶颈问题,需要克服以下两个关键技术难点:(1)如何避免进入人体后被清除和降解;(2)如何增强药物的跨膜能力并精准对接靶点。此外,除上述普遍问题外,siRNA药物还可能存在由正义链介导的严重脱靶效应[23]。
针对上述瓶颈问题,研究人员积极开展了化学修饰技术和递送系统的重点攻关。化学修饰技术可以较好地解决核酸药物的不稳定、易被清除和降解、半衰期短及免疫原性等问题,目前常用的化学修饰技术包括硫代磷酸酯(Phosphorothioate,PS)修饰[24]、核糖修饰(如2’-羟基位替换为2’-O甲基[25],2’-氟[26]等)、核糖五元环改造(如磷酰二胺吗啉代寡核苷酸phosphorodiamidate morpholino oligomer,PMO[27]和锁核酸Locked nucleic acid,LNA[28]替换等)、碱基(如假尿苷[29]、5-甲基胞苷[30]等类似物替换)及核苷酸链末端改造等。通过化学修饰,药物的药代动力学性质得到极大地改善,第一个关键技术难点得以突破。
而递送系统的开发成为解决第二个关键技术难点的重要手段,全面提升了核酸药物的靶向运输和识别精准度。目前具有应用前景有脂质纳米颗粒LNP[31]、环糊精纳米聚合物(Cyclodextrin polymer nanoparticles, CDP)[32]以及动态多聚缀合物(Dynamic polyconjugates, DPC)[33]、GalNAc[34]、肽、抗体和其他小分子等缀合物递送系统[35]。其中LNP和GalNAc技术相对成熟,并相继应用在多个获批siRNA药物中,如Patisiran、Givosiran等。但LNP也存在一些明显的缺陷,如易引发严重过敏反应、常被动靶向肝脏及内涵体逃逸率低等,此外还存在易氧化、制备重复性差等生产和储存问题,目前,行业届也在积极开发脂质体复合物(Lipoplex,LPX)[36]、脂质体聚合物(Lipopolyplex,LPP)[37]等更加先进的脂质体以及纳米递送系统。而GalNAc技术的应用已经成功实现了靶向肝脏核酸药物的精准递送,未来靶向其他器官的药物递送系统有望率先突破,为更多患者带来健康的福音,如Alnylam和Arrowhead公司正在研发的针对中枢神经系统、眼睛、肾癌细胞与肺上皮细胞等递送系统[38]。
1.3.2 、主要核酸药物研发进展
开发最早、相对已经度过技术瓶颈期的ASO药物起初的形式是未经化学修饰的DNA/RNA,尽管初步疗效较好,但是也存在一些明显的缺陷,如亲和力较弱、脱靶毒性、容易被降解、膜穿透性差等。随着多样化的化学修饰技术成功应用,有效避免ASO药物被核糖酶快速降解并延长半衰期,降低了免疫原性。同时由于分子呈现亲水和亲油特性,使其在体内跨膜运输具有更大的优势,对跨膜递送系统的依赖程度相对较低。因此,ASO药物具有技术门槛低、成药性好、市场前景广阔等突出优势,已然成为全球生物制药公司的开发热点。截至2020年底,PubMed库已收录进入临床试验的在研ASO药物42个,其中Ⅲ期8个,Ⅱ期23个,Ⅰ期11个。
自1998年RNAi的机理被揭示,siRNA药物研发经过20余年的理论创新和技术更迭取得了相对成功,是核酸药物领域的研究热点之一。不同于ASO药物,siRNA药物为双链结构,分子量更大,亲水性更好,与血浆蛋白结合能力较差导致清除速率较快,因此需要合适的化学修饰和递送系统,以改善其在体内生物分布和药物代谢、药物动力学等性质,使其更好地发挥疗效和减少不良反应的发生。LNP 或GalNAc递送系统的创新开发,使siRNA药物的研发进程进一步加快,2018-2020年先后有4款药物获批上市。截至2020年底,PubMed库已收录进入临床试验的在研siRNA药物31个,其中Ⅲ期5个,Ⅱ期17个,Ⅰ期9个。
相比于ASO和siRNA药物的巨大成功,Aptamer药物则显得黯淡许多。2004年获批上市的第一款Aptamer 药物Pegaptanib由于市场竞争激烈且疗效相比抗体药物没有显着优势,未能在市场占有一席之地。随后Fovista(Anti-PDGF)和Reg1(Anti-FIXa)两款Aptamer 药物研发相继失败,使得行业届对Aptamer关注度降低。但Aptamer 药物开发和作用机制决定了其先天优异的特异性和亲和力,且其免疫原性低、生产成本低和高温稳定性好等优点并未磨灭研究人员对它的热度。截至2020年底,PubMed库已收录进入在研Aptamer药物7个,分别处于不同适应症的Ⅰ期、Ⅱ期、Ⅲ期和Ⅳ期临床试验中,多款有望获批上市(表3)。
表3 全球Aptamer药物临床试验数据(截至2020年12月)
Source: PubMed/ Clinical trials. gov.
此外,还有miRNA、sgRNA、U1 snRNA、saRNA和mRNA等药物/疫苗处于研究开发阶段(表4),尚未有新药获批。其中,miRNA通过与靶mRNA互补结合,调节其翻译过程,因此针对miRNA也可开发针对某些疾病的药物。CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated nuclease)是目前最热门的基因编辑工具之一[39],sgRNA 是CRISPR 基因编辑工具的核酸部分,通过识别和结合靶基因,实现基因编辑的解毒功能而达到相应疗效。saRNA与siRNA结构相似,作用机制不同,其通过上调部分基因表达来发挥作用,但激活基因表达的作用机制尚未完全清楚。mRNA药物/疫苗由于生产成本低、设计和发现速度快等特点研发热度居高不下。除了在疫苗领域的应用外,还有一些外源mRNA(5款)补充蛋白疗法处于临床研究之中,如BNT111和CV8102等,可以引发人体对黑色素瘤相关抗原的全身免疫反应,以控制肿瘤病变。
表4 全球其他核酸药物临床试验数据(截至2020年12月)
Source: PubMed/ Clinical trials. gov.
2 、国内核酸药物市场情况
根据国家卫健委数据统计,截至2020年底,我国有各类罕见病患者约2000万人,且每年新增病例超20万,其中50%发病时期为出生或儿童期。误诊率高、确诊难、可用药少、用不起药等无不围困着这群罕见病患者。研究表明,罕见病发病原因中80%为遗传因素导致,如基因突变或基因缺陷等;20%为常见感染、过敏反应、机体退化或增生等其他原因导致。因此,基因修饰有望成为罕见病患者常规且重要的诊疗手段,而核酸药物兼具基因修饰和传统药物的双重特点,预计未来将在杜氏肌营养不良、肿瘤、囊性纤维化等基因遗传性疾病和病毒感染性疾病领域大展身手,继续保持高速增长态势。
2.1 、政策措施
近年来,国家政策大力鼓励创新药物研发,优先评审、上市许可人制定等重磅政策频出,有力地促进了我国创新药行业的发展。作为创新药前沿领域的生物医药更是上升到国家战略层面,并被列入七大战略性新兴产业和《中国制造2025》的重点领域之中。“十三五”以来,国务院、国家发改委、国家食品药品监督管理总局(CFDA)、科技部、工信部、等相继印发的《“十三五”国家科技创新规划》《 “十三五” 生物产业发展规划》《 “十三五” 生物技术创新专项规划》《医药工业发展规划指南》等政策文件明确将“基因治疗”、“核糖核酸(RNA)干扰药物、适配子药物”、“基因诊疗”等列入重点发展领域。按照《国家中长期科学和技术发展规划纲要(2006-2020年)》,由国家卫健委和军委后勤保障部牵头组织实施的“重大新药创制”科技重大专项(以下简称“专项”)于2008年正式启动,专项将生物药作为重点予以支持,研发内容涵盖了重组蛋白药物、抗体、疫苗、核酸药物、血液制品、基因和细胞治疗药物等。
2.2 、市场情况
目前,我国有且仅有一款治疗脊髓性肌萎缩症 (SMA)的特效药物Nusinersen获批上市。由于作为“临床急需新药”而获得临床豁免,目前正开展IV期临床试验,第一例受试者已经招募入组。根据2019年版《罕见病诊疗指南》中列出的各罕见病发病率[40],估算我国相关适应症患者人数,参考国外已上市核酸药物价格及Biogen公司数据,综合各因素(假定人均治疗费用140万元每人每年;渗透率5%,即50 万/年的治疗费用国内患者的接受率在5%左右),预计我国核酸治疗药物罕见病领域的市场规模高达333.8亿元,如表5所示。
表5 核酸药物在我国罕见病领域的市场规模预测
有鉴于此,国外行业巨头Ionis、Sarepta、Alnylam、Arrowhead等纷纷积极布局我国市场,力图抢占国内市场。而我国代表性企业苏州瑞博、海昶生物、锐博生物、中美瑞康、杭州天龙、圣诺制药、百奥迈科、艾博生物、斯微生物、蓝鹊生物、吉玛基因等瞄准新兴前沿领域,加快研发进程,以期占据一席之地。医药上市公司舒泰神、香雪制药、绿叶制药等也更加重视核酸药物领域的布局。虽然目前核酸药物的市场受众面可能不如其他常规医药,但某些可能进入慢性病用药市场的品类一旦获批上市,其高昂的治疗费用与一定的副作用风险将会是市场推广销售直接面临和亟需解决的重要问题。
2.3 、研发情况
2.3.1、关键技术难点
相比欧美等发达国家早早布局核酸药物研发,我国还相对薄弱。在国家产业创新政策积极推动下,不少研究机构和企业加强原研新药研发,但在成果产出方面,仍处于发展初级阶段,靶向性差、脱靶效应严重和稳定性差是制约我国核酸药物发展的三大关键技术难点。以中国科学院、北京大学、南开大学、天津大学、武汉大学、华南理工大学、军事科学院等为代表的国内顶尖研究力量重点围绕这些瓶颈问题,较早开展了系统研究,在核酸药物化学修饰技术、药代动力学性质、新型高效递送系统构建等方面取得了一系列重要研究成果,为国内原创新药的研发提供了坚实的理论和技术支撑。同时,也应该清醒地认识到,未来核酸药物的发展方向将不仅仅局限在肝脏靶点和外源核酸的精准递送方面,中枢神经、眼睛和其他部位癌细胞靶向系统、设计合成和化学修饰技术、RNA激活等颠覆性技术以及新型核酸药物将会成为该领域新的制高点[41]。
2.3.2、原创新药研发进展
近年来,在一系列创新型企业带动下,我国原创新药研发取得一系列新进展。2015年12月,由苏州瑞博(“苏州瑞博生物技术有限公司”)与美国Quark制药公司联合开发的用于治疗非动脉炎性前部缺血性视神经病变(Nonarteritic anterior ischemic optic neuropathy,NAION)小核酸药物QPI-1007正式获得国家药品监督管理局批准,是首个在我国开展临床试验的siRNA药物。目前,针对II型糖尿病、前列腺癌和NAION 产品也已进入II/III 期临床阶段,此外还有5款自研和2款合作开发药物处于临床前研发阶段。海昶生物围绕自主研发的核酸递送系统技术平台QTsome开展囊括原发性肾癌、原发性肝癌、小细胞肺癌和非小细胞肺癌等多个适应症的新药攻关,已有1个产品在美国进入临床试验II期阶段。中美瑞康针对罕见病、肿瘤和皮肤病变等疾病领域积极开展新药创制,已有3个产品进入临床前阶段。百奥迈科积极开展针对肝炎、老年黄斑变性、肝癌、鼻咽癌、膀胱癌等疑难疾病的新型核酸药物创制,已有8个产品处于临床试验和临床前研发阶段。艾博生物、蓝鹊生物和斯微生物等积极致力于mRNA 药物/疫苗的研发,2020年6月,艾博生物联合军事科学院军事医学研究院、云南沃森生物共同研制的针对COVID-19 的mRNA 疫苗(ARCoV)获批临床试验,是国内第一个获得批准的mRNA疫苗,现已进入II期临床阶段(表6)。
表6 我国核酸药物临床试验数据(截至2020年12月)
3、 推动我国核酸药物发展的对策建议
党的十九届五中全会提出,“坚持创新在我国现代化建设全局中的核心地位,把科技自立自强作为国家发展的战略支撑”、“完善国家创新体系,加快建设科技强国”。面对国外技术领先势力咄咄逼人的竞争局面,为进一步推动我国核酸药物领域创新发展,建议从强化源头创新、加快科技成果转移转化和营造良好竞争环境等三方面发力。
发挥举国体制优势,推动原创药物联合攻关。新型举国体制下的协同攻坚可以凝聚领域届的最大优势,集结汇聚科技自立自强的中国力量。核酸药物的数字化设计是其优于以往任何药物开发的重要优势,建议学习借鉴此次新型冠状病毒肺炎疫苗研发的经验做法,由国家有关部门牵头组织实施核酸药物创制专项,围绕核酸数字化设计平台、化学修饰、递送系统及药代动力学等关键环节,构建以企业为主体、高校、科研院所协同攻关的科技创新体系,充分调动多元化创新主体活力,在各自比较优势领域发挥独特功效。其次,建立健全国际开放合作体制,引入国外技术平台和研究力量参与本土适应症原研新药创制,同时加强与世界各国新药临床试验的合作与交流,以解决国内新药Ⅲ期临床试验受试者数量不足的问题,加快新药研发和上市进程。
完善成果转移转化机制,加快新药研发产业化进程。进入科技自立自强的新发展阶段,中国需要技术要素市场,科技成果转移转化是时代的需求,更是中国实现高质量发展的需求。生命健康前沿领域的核酸药物开发本是一个“十年磨一剑”的创新事业,建议重点从体制、市场和专业人才等方面着手:一是建立健全科技成果转移转化机制,学习借鉴美国、韩国等有益经验,充分发挥产业联盟协同优势,推动“政产学研用金”深度融合,探索构建新时代科技成果转移转化新模式、新方向,促进更多优秀成果走向工厂、走向市场,造福广大患者。二是完善我国核酸药物技术交易市场,加强高校、科研机构和企业与市场联系,建立健全从需求端到供给端高度匹配的市场供需体系。三是优化调整高校学科专业布局,将学历教育与非学历教育与职业发展融合起来,建立全国统一的技术经理人职称评定和管理办法,培育成果转化经理人队伍,加快技术和产品产业化进程。
营造良好竞争环境,繁荣核酸药物市场。原中国科学院院长白春礼提出,“我们要把‘卡脖子’清单变成我们的科研任务清单进行布局”。市场和应用需求是科研开发的强大引擎。促进我国核酸药物创新发展的关键在于如何平衡国内原研药和进口药关系,有效繁荣我国核酸药物市场。建议下一步具体做好“批、管、用”三方面工作:一是针对国内罕见病用药需求有选择性地逐步批准国外疗效好、成本低、市场前景好的核酸药物在国内上市,以此引领和促进国内相关适应症新药开发和产业化进程。二是注重核酸药物知识产权保护,加强市场监督管理,严厉打击哄抬药价和兜售未经批准的外国药品及假药,扰乱市场秩序的行为。三是支持有条件的地区将上市核酸药物纳入本地大病医疗保险或商业保险报销范围,鼓励药企和保险机构探索各种基于价值的支付模式,减轻看病用药的生活压力,保障人民生命健康。
4 、结语
核酸药物以其绝佳的疗效和较短的开发周期正成为临床用药和新药市场的热点,在商业上取得了巨大的成功。我国原创新药起步较晚,当前新药获批上市不多,但依托国内顶尖研究力量和一大批创新型研发企业砥砺奋进,已有多款新药处于临床试验和临床前阶段。2021年,我国即将开启“十四五”踏上新征程,面向人民生命健康的重大需求,围绕核酸药物前沿关键技术难点,汇聚企业、高校和科研院所等多元创新主体的强大力量,围困我国核酸药物研发的靶向性差、脱靶效应和稳定性差等瓶颈问题有望得到加快解决。可以预见,随着适应症的不断拓展、技术成熟带来的价格下降以及医保支付体制不断完善,核酸药物将会惠及更多适应人群,真正成为继小分子化学药和单抗药物之后又一类爆款产品。
参考文献
[1] 冯琦.核酸药物的研究现状与展望.中国生化药物杂志, 1997, 18(03):156-159.
[2] Opalinska J B, Gewirtz A M. Nucleic-acid therapeutics: basic principles and recent applications. Nature Reviews Drug Discovery, 2002, 1(7):503-14.
[3] Cech T R, Steitz J A. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94.
[4] L?Chelt U, Wagner E. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond). Chemical Reviews, 2015, 115(19):11043-11078.
[5] 王均,王兰,吕家臻等.上市核酸药物的疗效分析和研究进展.中国新药杂志, 2019, 28(18):2217-2224.
[6] Moreno P M, Pêgo A P. Therapeutic antisense oligonucleotides against cancer: Hurdling to the clinic. Frontiers in Chemistry, 2014, 2:87.
[7] Sundaram P, Kurniawan H, Byrne M E, et al. Therapeutic RNA aptamers in clinical trials. European Journal of Pharmaceutical Sciences, 2013, 48(1–2):259-271.
[8] Digenio A, Dunbar RL, Alexander VJ, et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in Type 2 diabetes. Diabetes care, 2016, 39(8):1408-1415.
[9] Wong E, Goldberg T. Mipomersen (kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. Pharmacy and Therapeutics, 2014, 39(2):119-122.
[10] Mendell J R, Goemans N, Lowes L P, et al. Longitudinal effect of eteplirsen vs. historical control on ambulation in DMD. Annals of Neurology, 2016, 79(2):257-271.
[11] Stein C A, Castanotto D, et al. FDA-approved oligonucleotide therapies in 2017. Molecular Therapy, 2017, 25(5):1069-1075.
[12] Benson M D, Waddington-Cruz M, Berk J L, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. The New England Journal of Medicine, 2018, 379(1):22-31.
[13] Heo Y A. Golodirsen: First approval. Drugs, 2020, 80(3):329-333.
[14] Paik J, Duggan S. Volanesorsen: First global approval. Drugs. 2019, 79(12):1349-1354.
[15] Richardson P G, Riches M L, Kernan N A, et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood, 2016, 127(13):1656-1665.
[16] Adams D, Gonzalez-Duarte A, O'Riordan W D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine, 2018, 379(1):11-21.
[17] Balwani M, Sardh E, Ventura P, et al. Phase 3 Trial of RNAi therapeutic givosiran for acute intermittent porphyria. The New England Journal of Medicine, 2020, 382(24):2289-2301.
[18] Scott L J, Keam S J. Lumasiran: First approval. Drugs, 2021, 81:277-282.
[19] Raal F J, Kallend D, Ray K K, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. The New England Journal of Medicine. 2020, 382(16):1520-1530.
[20] Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. The New England Journal of Medicine, 2020, 383(27):2603-2615.
[21] Corbett, K S, Flynn B, Foulds K E, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. The New England Journal of Medicine, 2020, 383(16):1544-1555.
[22] Wang F D, Zuroske T, Watts J K. RNA therapeutics on the rise. Nature Reviews Drug Discovery, 2020, 19(7):441-442.
[23] 杨若南,许丽,徐萍,苏燕.RNA疗法产业发展态势分析及建议[J].中国生物工程杂志,2021,41(Z1):162-171.
[24] Bennett C F. Therapeutic antisense oligonucleotides are coming of age[J]. Annual Review of Medicine, 2019, 70: 307-321.
[25] Inoue H, Hayase Y, Imura A, et al. Synthesis and hybridization studies on two complementary nona (2'-O-methyl) ribonucleotides[J]. Nucleic Acids Research, 1987, 15(15): 6131-6148.
[26] Fucini R V, Haringsma H J, Deng P, et al. Adenosine modification may be preferred for reducing siRNA immune stimulation[J]. Nucleic Acid Therapeutics, 2012, 22(3): 205-210
[27] Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties[J]. Antisense and Nucleic Acid Drug Development, 1997, 7(3): 187-195.
[28] Christensen U, Jacobsen N, Rajwanshi V K, et al. Stopped-flow kinetics of locked nucleic acid (LNA)–oligonucleotide duplex formation: Studies of LNA–DNA and DNA–DNA interactions[J]. Biochemical Journal, 2001, 354(3): 481-484.
[29] Karikó K, Muramatsu H, Welsh F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability[J]. Molecular Therapy, 2008, 16(11): 1833-1840.
[30] Kormann M S D, Hasenpusch G, Aneja M K, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice[J]. Nature Biotechnology, 2011, 29(2): 154-157.
[31] Jayaraman M, Ansell S M, Mui B L, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo[J]. Angewandte Chemie, 2012, 124(34): 8657-8661.
[32] Davis M E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic[J]. Molecular Pharmaceutics, 2009, 6(3): 659-668.
[33] Rozema D B, Lewis D L, Wakefield D H, et al. Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes[J]. Proceedings of the National Academy of Sciences, 2007, 104(32): 12982-12987.
[34] Khorev O, Stokmaier D, Schwardt O, et al. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor[J]. Bioorganic & Medicinal Chemistry, 2008, 16(9): 5216-5231.
[35] Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: State of the art[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 1-25.
[36] Kranz L M, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy[J]. Nature, 2016, 534(7607): 396-401.
[37] Rezaee M, Oskuee R K, Nassirli H, et al. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems[J]. Journal of Controlled Release, 2016, 236: 1-14.
[38] Weng Y, Xiao H, Zhang J, et al. RNAi therapeutic and its innovative biotechnological evolution[J]. Biotechnology Advances, 2019, 37(5): 801-825.
[39] Ran F A, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8(11): 2281-2308.
[40] 国家卫生健康委. 罕见病诊疗指南(2019年版).[2021-02-03]. Guidelines for diagnosis and treatment of rare diseases (2019 Edition). [2021-02-03].
[41] 谢雨礼.RNA药物的未来发展方向[J].张江科技评论,2020(03):50