摘要
选择性催化还原技术(Selective Catalytic Reduction, SCR)是目前国际上工程应用最多、技术最成熟的一种固定源烟气脱硝技术.近年来,低温 SCR 脱硝工艺成为研究者们的关注点,SCR 脱硝技术的核心是催化剂,因此,具有一定抗 H2O、抗 SO2 性能并在低温条件下具有良好脱硝活性的环境友好型低温脱硝催化剂成为脱硝领域研究的热点.目前,对低温脱硝催化剂的脱硝性能和抗性的研究主要集中在实验室的小试规模,而实际烟气条件下成型催化剂性能表现和中毒机理的研究对于低温脱硝催化剂的基础研究和工业应用的推广具有巨大的推动意义.
本文以 Ce 基低温脱硝蜂窝催化剂为研究对象,通过自行设计的低温脱硝中试装置对H2O 和 SO2 混合模拟烟气对该催化剂吸附 NOx 能力的影响进行了研究,并通过原位红外(Insitu DRIFTS)对其影响机理进行了研究.同时,对该催化剂的脱硝活性、运行最佳工况参数进行了测试,并在实际燃煤烟气条件下对该催化剂的脱硝活性、抗性和中毒机理进行了研究.实验所得结论如下:
(1)在不同工况参数下对该成型催化剂的吸附能力影响的研究结果表明:①随着 NOx浓度和烟气温度的升高,吸附量逐渐降低,而吸附速率逐渐升高;②当通入 H2O 时,催化剂吸附总量和吸附速率明显降低;③在含 SO2 烟气中通入 H2O 与不通入 H2O 吸附情况相比,催化剂吸附总量由 7528 ppm 上升至 9824 ppm,但吸附平衡时间由 300 min 延长至 760 min.表明 H2O 和 SO2 对催化剂吸附 NOx 有一定抑制和竞争性吸附作用,降低了催化剂的吸附速率即活性位点的活性.
(2)在 NOx 吸附过程中,H2O 会与 NOx 发生竞争性吸附,影响 NOx 的吸附减少活性硝酸盐的形成,从而降低催化剂的脱硝活性;在反应过程中,H2O 的加入会导致 B 酸位点的占用和活性降低,从而导致吸附能力和脱硝活性的降低,但该影响是可逆的;当同时通入SO2 和 H2O 时,SO2 和 H2O 与 NH3 反应形成的(NH4)2SO4 等物质会与 B 酸位点的硝酸根发生竞争性作用,并且在活性位点累积覆盖活性位点从而导致催化剂不可逆失活.
(3)综合考虑节约能耗和脱硝活性,实验条件选定反应温度为 100 oC,空速为 3333 h-1,氨氮比为 0.9,NOx 浓度为 100 ppm,通入 10 vol.% H2O 进行 24 h 抗水性测试,效率稳定在80 %以上,表明该催化剂具有良好的抗水性和稳定性,同时证明了 H2O 对该催化剂的影响是可逆的.
(4)实际烟气条件下的中试结果表明,100 oC 时催化剂的脱硝效率可以稳定在 70 %以上,高浓度 SO2 会对催化剂产生明显毒害作用,运行过程形成的硫酸盐类和催化剂组分的硫酸化是催化剂活性降低的主要原因.
以上结果表明,该环境友好型低温脱硝催化剂具有优异的低温脱硝性能和抗 H2O/SO2性能,该低温脱硝工艺改造方便,具有广阔的工业应用前景.
关键词:低温,蜂窝催化剂,NOx吸附,中试,选择性催化还原
ABSTRACT
Selective Catalytic Reduction (SCR) is currently a fixed source flue gas denitrationtechnology with the most engineering applications and mature technologies in the world. In recentyears, the SCR process with low temperature and low dust tail has become the focus ofresearchers. As the core of SCR denitration technology, the catalyst which has certain H2O/SO2resistance and good denitrification activity under low temperature environment-friendlylow-temperature denitrification has become a hot spot in the field of denitrification research inrecent years. At present, the research on the denitrification performance and resistance oflow-temperature denitration catalysts is mainly concentrated on the small scale of the laboratory,and the performance of the shaped catalyst under actual flue gas conditions and the mechanism ofpoisoning are investigated for the basic research and industrial application of low-temperaturedenitration catalysts,which is profound and impelling.
The Ce-based low-temperature denitrification honeycomb catalyst was the research subject inthis thesis. During the research, the self-designed low-temperature denitrification pilot plant wasused to study the effect of H2O and SO2 on the NOx adsorption capacity of the catalyst undersimulated flue gas conditions, and its influence mechanism has been studied with in situ drifts. Atthe same time, the catalyst's denitration activity and optimal operating parameters were tested, andthe catalyst's denitration activity, resistance and poisoning mechanism were studied under actualcoal-fired flue gas conditions. The conclusions of the experiment were as follows:
(1) The results of the study on the influence of the adsorption capacity of the shaped catalystunder different operating parameters show that: ①As the NOx concentration and flue gastemperature increase, the adsorption amount gradually decreases, and the adsorption rate graduallyincreases; The total amount of catalyst adsorption and the adsorption rate are significantly reduced;③ Compared with the case without H2O adsorption, the total adsorption of catalyst increasedfrom 7528 ppm to 9824 ppm, but the adsorption equilibrium time was extended from 300 min to760 min. It shows that H2O and SO2 have certain inhibitory and competitive adsorption effects onNOx adsorption with the catalyst, and which reduces the adsorption rate of the catalyst, that is, tolower the activity of the active site.
(2) During the NOx adsorption process, H2O will compete with NOx for competitiveadsorption, which will affect the NOx adsorption and reduce the formation of nitrate, therebyreducing the catalyst's denitration activity; during the reaction, the addition of H2O will lower theactivity of B acid site, which leads to a reduction in reaction activity; when SO2 and H2O aresimultaneously introduced, the (NH4)2SO4 and other substances formed by the reaction of SO2 andH2O with NH3 act as acid sites, and the acid sites will have competitive effects on the nitrate ionof the B acid site.
(3) Considering comprehensively the effects of reheat energy consumption and H2O on denitration efficiency, the flue gas reaction temperature is selected as 100 oC, the space velocity isselected as 3333 h-1, the ammonia-nitrogen ratio is selected as 0.9, and the NOx concentration is100 ppm as the experimental conditions Passing 10 vol.% H2O for 24 h H2O resistance test, theefficiency is stable above 80 %, indicating that the catalyst has good H2O resistance and stability,at the same time, it proves that the effect of H2O on the catalyst is reversible.
(4) The 168 h continuous experiment and high-load experiment results show that thedenitration efficiency of the catalyst can be stabilized at more than 70 % at 100 oC, and highconcentration of SO2 will have a significant toxic effect on the catalyst. SEM, XRD, BET, TG,NH3-TPD characterization methods were used to characterize the catalyst after high-loadexperiments, the results of which show that the sulfates formed during operation and the sulfationof catalyst components were the main reasons for the decrease in catalyst activity.
The above results indicate that the environmentally friendly low-temperature denitrationcatalyst has excellent low-temperature denitration performance and resistance to H2O/SO2resistance. The denitration process is easy to transform and has broad industrial applicationprospects.
Key words: low temperature; selective catalytic reduction; NOx adsorption; H2O resistance; pilottest
目录
摘要 ................................................................................................................................................... I
ABSTRACT ..................................................................................................................................... II
第一章 绪论 ................................................................................................................................. IV
1.1 前言 .................................................................................................................................... 1
1.2 我国氮氧化物的排放现状 ................................................................................................ 1
1.3 氮氧化物的危害 ................................................................................................................ 2
1.4 氮氧化物的产生及控制机理 ............................................................................................ 3
1.4.1 热力型 NOx ............................................................................................................ 3
1.4.2 燃料型 NOx ............................................................................................................ 3
1.5 氮氧化物减排技术 ............................................................................................................ 4
1.6 论文选题依据和研究内容 ................................................................................................ 5
1.6.1 选题依据 ................................................................................................................. 5
1.6.2 研究内容 ................................................................................................................. 9
1.7 技术路线 .......................................................................................................................... 11
第二章 实验系统及方法 ............................................................................................................. 12
2.1 低温 SCR 脱硝系统 ........................................................................................................ 12
2.1.1 中试实验装置 ....................................................................................................... 12
2.1.2 气体检测方法 ....................................................................................................... 13
2.2 实验材料及设备 .............................................................................................................. 13
2.2.1 实验材料 ............................................................................................................... 13
2.2.2 实验设备 ............................................................................................................... 14
2.3 表征方法 .......................................................................................................................... 14
第三章 成型催化剂吸附 NOx 能力的研究 ............................................................................... 16
3.1 引言 .................................................................................................................................. 16
3.2 不同 NOx 浓度对催化剂吸附的影响 ............................................................................ 18
3.3 不同温度对成型催化剂吸附的影响 .............................................................................. 20
3.4 相同温度不同浓度 H2O 条件下成型催化剂吸附能力研究 ......................................... 23
3.5 相同 H2O 浓度,不同温度对成型催化剂吸附能力的影响 ......................................... 26
3.6 SO2 和 H2O 对催化剂吸附的影响 ................................................................................... 29
3.7 本章小结 .......................................................................................................................... 30
第四章 催化剂脱硝性能的研究 ................................................................................................. 31
4.1 引言 .................................................................................................................................. 31
4.2 不同温度下成型催化剂的脱硝效率 .............................................................................. 31
4.3 不同空速下催化剂的脱硝效率 ...................................................................................... 32
4.4 不同 NOx 浓度对催化剂脱硝效率的影响 .................................................................... 33
4.5 不同氨氮比对催化剂脱硝效率的影响 .......................................................................... 34
4.6 不同温度不同空速下催化剂的活性 .............................................................................. 34
4.7 不同温度下不同 H2O 对催化剂脱硝性能的影响 ......................................................... 35
4.8 催化剂抗水性测试 .......................................................................................................... 36
4.9 本章小结 .......................................................................................................................... 36
第五章 H2O 和 SO2 对催化剂影响机理研究 ............................................................................. 38
5.1 引言 .................................................................................................................................. 38
5.2 H2O 对催化剂吸附 NOx 吸附过程的影响 ..................................................................... 38
5.3 H2O 和 SO2 对催化剂反应过程影响机理 ....................................................................... 39
5.4 本章小结 .......................................................................................................................... 41
第六章 实际燃煤烟气条件下中试实验研究 ............................................................................. 43
6.1 引言 .................................................................................................................................. 43
6.2 中试装置简介 .................................................................................................................. 43
6.3 不同工况参数下的脱硝性能 .......................................................................................... 44
6.3.1 催化剂吸附特性研究 ........................................................................................... 44
6.3.2 反应温度对脱硝效率的影响 ............................................................................... 44
6.3.3 氨氮比对脱硝效率的影响 ................................................................................... 45
6.3.4 空速对脱硝效率的影响 ....................................................................................... 46
6.4 催化剂稳定性测试及强化实验 ...................................................................................... 47
6.5 强化实验结果表征分析 .................................................................................................. 48
6.6 结论及建议 ...................................................................................................................... 50
第七章 结论与展望 ..................................................................................................................... 52
7.1 主要结论 .......................................................................................................................... 52
7.2 创新点 .............................................................................................................................. 53
7.3 工作展望 .......................................................................................................................... 53
参考文献......................................................................................................................................... 54
致 谢 ............................................................................................................................................ 60
作者简介......................................................................................................................................... 61
第一章 绪论
1.1 前言
随着经济的发展和人民生活水平的提高,人民的需求不仅局限于物质上,对于美好、健康的生活环境也更加的重视.然而,作为人类健康基本需求的清洁的空气在全球范围内却面临着污染的严重威胁.世界卫生组织(WHO)最近更新的《空气质量准则》对颗粒物(PM2.5)、臭氧(O3)、二氧化氮(NO2)和二氧化硫(SO2)四种常见空气污染物提出了新的准则.其中氮氧化物(NOx)对颗粒物(PM2.5)、臭氧(O3)的形成有很大贡献.NOx 作为大气的主要污染物之一,也是中国第一大酸性气体污染物,对人类健康和自然界的生态平衡造成了极大的危害,其中 NO2 经过紫外线的照射与大气中的碳氧化物等反应生成的二次污染物可对人类生产、活动和自然环境造成严重的危害,包括引起光化学烟雾、臭氧层破坏和全球变暖等环境问题[1,2].
自 2013 年至 2017 年实施"防止空气污染行动计划"后,中国的空气质量得到了显着改善[3].在过去的 5 年中,中国的细颗粒物(PM2.5),二氧化硫(SO2)和二氧化氮(NO2)的年平均浓度分别从 72 ?g/m3、40 ?g/m3、44 ?g/m3 降低至43 ?g/m3、18 ?g/m3 和 31 ?g/m3[4, 5].此外,"蓝天保卫战三年行动计划"明确指出,与 2015 年相比,到 2020 年 PM2.5 的浓度和氮氧化物(NOx)的总排放量应减少15 %以上.这是一项艰巨的环保任务.同时,研究结果表明,次级无机离子(硫酸根,硝酸根和铵根)占 PM2.5 总质量的 36 %[6].此外,NOx 通过在空气中转变为硝酸盐或硝酸等化合物对 PM2.5 形成贡献了 40 %以上的无机成分[7,8].另一方面,硝酸盐的形成将进一步促进 PM2.5 浓度的增加.因此,如果不能有效地控制NOx 的排放,将不可避免地给大气中的 PM2.5 消减带来很大压力[9].
1.2 我国氮氧化物的排放现状
如图 1 所示,我国目前的能源结构依旧以煤、石油和天然气等化石燃料为主,根据《中华人民共和国国家统计局(2009-2018)》公布的数据,我国的能源消费量在逐年递增,其中煤炭的消费总量占能源总消费量的 60 %以上,且在短期内我国仍是以煤炭作为主要能耗[10].化石燃料在燃烧过程中会产生大量的污染气体,如:SO2、NOx、CO 等.由图 1 可知,在 2011-2017 年间煤炭的消耗总量基本持平,但是 NOx 的排放总量明显降低,尤其是 2015 年到 2016 年间.2015年,党的十八届五中全会提出创新、协调、绿色、开放、共享的五个发展理念,国家对于生态文明建设和环境保护做出了巨大的努力,以改善环境质量为核心,着力解决突出环境问题,取得积极进展.尤其是煤电行业,安装脱硝设施的机组由 0.8 亿千瓦增加到 8.3 亿千瓦,安装率由 12 %增加到 92 %,脱硝设施的配套是大气中 NOx 浓度降低的主要原因.
自 2013-2017 年"大气污染防治行动计划"实施 5 年来,我国大部分区域的空气环境质量有了明显改善,基本实现了预期目标.但是,我国整体的大气环境现状仍不容乐观,全国 338 个城市仍有 22.08 %的城市处于污染状态.《中国环境健康公报(2018)》数据显示,虽然氮氧化物排放总量有所降低,但是在 338个城市中二氧化氮(NO2)的浓度仍居高不下.在 2018 年 7 月国务院印发的《打赢蓝天保卫战三年行动计划》明确提出,经过 3 年努力,进一步明显降低 PM2.5等的浓度.随着我国环境空气质量标准限值的提高和治理目标的细化,对于烟气排放的要求必然会愈加严格.而作为导致雾霾天气主要原因之一的氮氧化物,也必将成为治理的主要目标之一.
1.3 氮氧化物的危害
NOx 作为大气的主要污染物之一,也是中国第一大酸性污染性气体,对人体和生态环境健康造成了极大的危害,其中 NOx 经过紫外线的照射与大气中的碳氧化物反应生成的二次污染物可对人类生产、活动和自然环境造成严重的危害,包括引起光化学烟雾、臭氧层破坏和全球变暖等环境问题[11-13].根据张楚莹等[14]的预测,中国 NOx 排放量会继续增长,2030 年我国 NOx 排放量将达到35.4×106t,必然会对环境造成更大压力.因此,对于 NOx 排放的控制刻不容缓.
1.4 氮氧化物的产生及控制机理
氮氧化物(NOX)是主要大气污染物之一,主要包括一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)和它们的衍生物,这些污染性气体对人体健康和环境均具有巨大的影响.一般情况下,氮氧化物(NOx)污染物产生的途径主要有二个方面:一是自然发生源污染,二是人为发生源污染.其中,后者是大气中 NOx 的发生源.自然发生源主要包括雷电、臭氧、细菌的作用下产生的NOx,自然条件下形成的 NOx 由于自然选择能达到生态平衡,因此对大气没有多大的污染.在人为发生源中,分为固定源即工业锅炉等化石燃料的燃烧和移动源即机动车化石燃料的使用等.NOx 的生成机理主要分为两种[15-17]:
1.4.1 热力型 NOx
其主要来源于燃烧过程中,在温度高于 1500 oC 的高温区,空气中的 N2 被氧化成 NO,根据捷里德维奇模型,该反应机理如下:
N2+O2=NO+N(1-1)
N+O2=NO+O(1-2)
N+OH=NO+H(1-3)
在整个反应过程中 N2 较稳定,整个反应的速率取决于式 1-2 的反应速率.在工程实践中,可通过降低 O2 的浓度、降低火焰的温度、缩短烟气在高温区的停留时间等方法,降低热力型 NOx 的生成.具体表现为:烟气再循环、高温空气燃烧、H2O 喷射等技术.
1.4.2 燃料型 NOx
燃料型 NOx 即煤炭、石油等化石燃料在燃烧过程中生成的 NOx,其产生量和化石燃料的燃烧有着直接的联系,生成量巨大,该类型 NOx 是脱硝研究的重点.其生成主要包括均相反应和多相反应两个途径.1)均相反应
在高温条件下(800~950 oC)燃烧时,煤炭中的挥发分 HCN 等与自由基 O、OH 等发生反应,生成 N2O.主要反应过程如下:
NCO+NO→N2O+CO(1-4)
NH+NO→N2O+H(1-5)
2)多相反应
多相反应主要包括气固反应和固体催化反应.研究表明 N2O 的生成是 O2 和NO 共同存在时进行多相反应的生成物.
(-CN)+NO→N2O+(-C)(1-6)
NO+焦炭 C→(-CNO)(1-7)
2(-NCO)→N2O+(-CO)+(-C)(1-8)
该部分 NOx 的控制,是脱硝技术针对的重点.该部分控制技术方法可分为两大类:①燃烧过程中脱除技术,如:分级燃烧、再燃烧、及各种类型的燃烧器等;②对燃烧后生成的 NOx 进行控制减排,如:选择性催化还原(SCR)、热力脱硝、选择性非催化还原(SNCR)等技术.
…………由于本文篇幅较长,部分内容省略,详细全文见文末附件
第七章结论与展望
7.1主要结论
本文以Mn-Ce-Fe/Al2O3成型催化剂为研究对象,通过自行设计的中试实验装置对H2O和SO2在不同条件下对该催化剂的吸附NOx性能进行研究,然后通过原位红外表征手段对催化剂的吸附机理进行研究.此外,对于该催化剂在不同参数下的脱硝性能进行了探究,确定其最佳的运行工况.最后,在实际燃煤烟气条件下对该催化剂的实际应用进行了实验,并探讨其在真实烟气条件下运行的最佳工况和抗性.
(1)对不同条件下成型催化剂吸附能力的研究结果表明,NOx浓度的变化未对催化剂造成规律性的影响;随着温度的升高,催化剂的吸附总量和平衡时间都呈下降趋势,但是吸附的速率明显上升;温度不变的前提下,随着H2O浓度的增大吸附总量降低,达到吸附饱和的时间先降后升;相同H2O条件下,随着温度的上升,吸附达到平衡的时间和吸附总量变化趋势与不通入H2O相似,表明H2O对催化剂吸附能力的影响可以通过升高温度补偿;H2O和SO2会促进吸附总量的提升,但是对于吸附达到平衡的时间会明显延长,表明SO2会与催化剂吸附NOx发生竞争性吸附,但不会占用活性位点,反而会充当活性位点.
(2)根据关键运行参数实验结果,温度、空速、氨氮比低温脱硝催化活性有明显影响,浓度实验结果表明,该催化剂对NOx浓度有较强的适应性.同时该催化剂表现出良好的低温活性和抗水性能.
(3)通过单因素实验确定催化剂最佳运行工况为:温度:100℃,氮氧化物浓度为100ppm,空速3333h-1,氨氮比0.9.在此条件下进行24h催化剂抗水性测试,结果显示该催化剂脱硝效率稳定保持在95%以上.
(4)原位红外表征结果证明:①催化剂的在一定条件下的活性位点是一定的,因此可以解释在不同条件下催化剂的吸附总量是一定的,而随着吸附条件的变化,吸附总量发生变化是因为NOx在吸附过程中会发生反应生成中间物质,而不同的条件下中间物质的生成量和生成速率也是有差异的,因此结合催化剂的吸附能力和吸附速率可以间接反映在一定条件下的脱硝活性;②在吸附过程中,H2O催化剂的影响主要是因为H2O会与NOx发生竞争性吸附占用活性位点,导致反应性气体的吸附量减少,同时会影响易参与反应的活性硝酸盐的形成,从而降低催化剂的脱硝活性;③在反应过程中,H2O的加入会导致L酸位点占用NOx和NH3形成更多不活泼的硝酸根,B酸位点的活性降低,从而导致反应活性的降低;④在反应过程中,当同时通入SO2和H2O时,SO2和H2O在反应过程中在催化剂表面吸附、反应活化后充当酸位点导致,该酸位点会与B酸位点的硝酸根发生竞争性作用,从而阻碍反应气体的接触.SO2 的通入造成反应过程中生的硫酸盐类物质的沉积,硫酸盐的形成抑制了催化剂表面参与反应的活性硝酸盐的形成,从而使催化剂的活性位点失去活性.并且随着反应时间的进行峰逐渐增强,表明 SO2 的抑制作用强烈且不可逆.
(5)在实际燃煤烟气条件下对该催化剂的抗性及活性进行测试,实验结果表明该催化剂具有良好的低温活性和抗性,对于低温脱硝催化剂的工业应用推广具有重大的意义.
7.2 创新点
(1)时至今日开发出的大部分低温脱硝催化剂(反应温度<150 ℃)是粉体或者小型颗粒的形态,虽表现出良好的脱硝性能但是其反应条件与实际的工况条件相差太大,离实际应用还存在很大的差距.本实验使用自行设计的中试实验装置对成型蜂窝催化剂的性能进行考察,反应气体使用模拟烟气.
(2)为了验证该催化剂的实际应用能力,对于该催化剂从实验室中试到实际燃煤烟气下的中试进行了测试,并对该催化剂进行了高强度抗性测试,并对该催化剂在实际烟气条件下的中毒机理进行了探讨.结果表明该催化剂具有良好低温抗性和脱硝性能,具有广阔的商业应用前景.
7.3 工作展望
(1)目前普遍认为 H2O 对低温脱硝催化剂的影响是可逆的,但是 H2O 对其影响的机理尚需探讨,考虑是否能利用表征手段,从分子的层面观察水分子对催化剂脱硝过程的影响,从而研发高抗水性的环境友好型低温脱硝催化剂.
(2)不同的体系中毒机理存在很大的差异,对于该超低温催化剂的抗水抗硫性能仍需作进一步的研究.
(3)从长远考虑,有必要研究成本低廉的再生方法.实际应用中低温脱硝工艺的优化可以继续探究,对于工业的推广和长久发展具有重要的意义.
参考文献
[1] Skalska, K, et al., Trends in NO(x) abatement:a review.[J].Sci Total Environ, 2010, 408(19):3976-3989.
[2] R, S, et al., Catalysis for NOx abatement[J].Applied Energy, 2009, 86(11): 2283-2297.
[3] L, X , Zhang Q , Zhang Y , et al. Source contributions of urban PM2.5 in the Beijing-Tianjin-Hebeiregion: Changes between 2006 and 2013 and relative impacts of emissions and meteorology[J].Atmospheric environ, 2015, 123(DEC.PT.A):229-239.
[4] C, S, et al., The impact of the "Air Pollution Prevention and Control Action Plan" on PM2.5concentrations in Jing-Jin-Ji region during 2012-2020. Sci Total Environ, 2017. 580(FEB.15),197-209.
[5] F, Y., et al., Defending blue sky in China: Effectiveness of the "Air Pollution Prevention andControl Action Plan" on air quality improvements from 2013 to 2017. J Environ Manage,2019. 252: 109603.
[6] M, ZH, et al., Seasonal trends in PM2.5 source contributions in Beijing, China. AtmosphericEnviron, 2005. 39(22) : 3967-3976.
[7] Peel, J.L., et al., Impact of nitrogen and climate change interactions on ambient air pollutionand human health. Biogeochemistry, 2012. 114(1-3): 121-134.
[8] Roy, S., et al., Catalysis for NOx abatement. Applied Energy, 2009. 86(11): 2283-2297.
[9] SH, W , et al., Catalysts for the selective catalytic reduction of NOx with NH3 at lowtemperature. Cat Sci Technol, 2015. 5(9): 4280-4288.
[10] 国家统计局, 中国统计年鉴,http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm,2019.National Bureau of Statistics, China Statistical Yearbook,http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm, 2019.
[11] L, Z, et al., Modeling of Selective Catalytic Reduction (SCR) for NO Removal UsingMonolithic Honeycomb Catalyst. Energy & Fuels 2009, 23 (12), 6146-6151.
[12] S, C., et al., Air pollution in China: Status and spatiotemporal variations. Environ Pollut,2017. 227(aug.): 334-347.
[13] X, H., et al., Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides forEnvironmental Applications: A Critical Review. Environ Sci Technol, 2017. 51(16):8879-8892.
[14] 张楚莹等.中国能源相关的氮氧化物排放现状与发展趋势分析[J].环境科学学报,2008,28(12):2470-2479.CH Y, ZH, et al. Analysis of current status and development trend of energy-related nitrogenoxide emissions in China [J]. Jour Environ Sci, 2008, 28 (12): 2470-2479.
[15] 赵毅等. 燃煤电厂 SCR 烟气脱硝技术的研究[J]. 电力科技与环保, 2009, 25(1):7-10.Y, ZH, et al. Research on SCR flue gas denitration technology for coal-fired power plants [J].Electric Power Technology and Environmental Protection, 2009, 25 (1): 7-10.
[16] 苏亚欣等,燃煤氮氧化物排放控制技术[M]. 2005.Y X, S, et al., Coal-burning NOx emission control technology [M]. 2005.
[17] 赵卫星等, 烟气脱硝技术研究进展,广东化工, 2007, 034(005):59-61.W X , ZH, et al. Research progress of flue gas denitrification technology GuangdongChemical Industry, 2007, 034 (005): 59-61.
[18] 冉献强. 氮氧化物控制技术的研究进展[J]. 低碳世界. 2017(19): 3.X Q, R. Research progress of nitrogen oxide control technology [J]. Low Carbon World.2017 (19): 3.
[19] 王继华. SCR、SNCR 和 SNCR/SCR 烟气脱硝技术应用及比较[J]. 电力科技与环保, 2018,34(05):39-40.J H, W. Application and comparison of SCR, SNCR and SNCR/SCR flue Gas denitrationtechnology [J]. Electric Power Technology and Environmental Protection, 2018, 34 (05):39-40.
[20] 孙少波. SNCR 与 SCR 脱硝技术比较[J]. 科技风, 2019, 381(13):172.SH B, S. Comparison of SNCR and SCR denitration technology [J]. Science and Technology,2019, 381 (13): 172.
[21] 史夏逸等.烧结烟气脱硝技术分析及比较[J].中国冶金.2017,27(8):56-59.X Y, SH, et al., Analysis and comparison of sintering flue gas denitration technology [J].China Metallurgy. 2017, 27 (8): 56-59.
[22] 王烁等. SNCR 脱硝技术应用的要点及探索[J]. 价值工程, 2019(27).SH, W, et al., Main points and exploration of SNCR denitration technology application[J].Value Engineering, 2019 (27).
[23] 周昊. SCR 低温脱硝催化剂的制备与研究[D]. 北京, 中国矿业大学(北京), 2016H, ZH, Preparation and Research of SCR Low Temperature Denitration Catalyst [D]. Beijing,China University of Mining and Technology (Beijing), 2016
[24] 沈伯雄等. CeO2/ACF 的低温 SCR 烟气脱硝性能研究[J]. 燃料化学学报, 2007, 35(1) :125-128.B X, SH, et al., Study on CeO2/ACF Low Temperature SCR Flue Gas DenitrificationPerformance [J]. Journal of Fuel Chemistry and Technology, 2007, 35 (1): 125-128.
[25] 高翔等.低温 SCR 脱硝催化剂综述[J].江汉大学学报(自然科学版), 2014,42(2): 12-18.X, G, et al., A review of low-temperature SCR denitration catalysts [J]. Journal of JianghanUniversity (Natural Science Edition), 2014,42 (2): 12-18.
[26] L, X,et al.Manganese Oxides Supported on TiO2-Graphene Nan omposite Catalysts forSelective Catalytic Reduction of NOX with NH3 at Low Temperature[J].Ind Eng CheRes,2014,53(29):11601-11610
[27] Forzatti, P., Present status and perspectives in de-NOx SCR catalysis[J].Appl Catal A:2001,222 (1-2), 221-236.
[28] 赵华等,选择性催化还原法烟气脱氮技术现状[[J].中国电力,2004, 37 (12), 74-76.H, ZH, et al., Status of Selective Catalytic Reduction Method for Flue Gas Denitrification [[J].China Electric Power, 2004, 37 (12), 74-76.
[29] SH, W, et al., Catalysts for the selective catalytic reduction of NOx with NH3 at lowtemperature[J]. Catal Sci Tech,2012,5(9):4280-4288.
[30] K, F, et al., Activity and selectivity of pure manganese oxides in the selective catalyticreduction of nitric oxide with ammonia[J].Cheminform, 1994, 3(2-3):173-189.
[31] Thirupathi B, et al.,Co-doping a metal (Cr,Fe,Co,Ni,Cu,Zn,Ce,and Zr) on Mn/TiO2, catalystand its effect on the Selective Reduction of NO with NH3,at low-temperatures[J].Appl CatalB Enviro,2011,110(41):195-206.
[32] Min, K, et al.,Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. CatalToday, 2006, 111(3-4):236-241.
[33] 陈建军.锰基催化剂研制及其低温选择性催化还原 NOx 机理研究[D].清华大学,2007. J J,CH, et al., Development of manganese-based catalyst and mechanism of low-temperatureselective catalytic reduction of NOx [D]. Tsinghua University, 2007.
[34] 董文杰等,用于 NH3-SCR 的锰铈基催化剂的改性研究[J].车用发动机,2013(3):40-44.W J,D, et al., Modification of manganese-cerium-based catalyst for NH3-SCR [J] .VehicleEngine, 2013 (3): 40-44.
[35] L, F, et al., Selective Catalytic Reduction of NO with NH3, over manganese substituted irontitanate catalyst:Reaction mechanism and H2O/SO2,inhibition mechanism study[J].CatalysisToday, 2010, 153(3-4):70-76.
[36] Y, S, et al., Low Temperature Selective Catalytic Reduction of NO with NH3,over Mn-Fespinel:Performance,mechanism and kinetic study[J].Appl Catal B Environ,2011,110(41):71-80.
[37] Pe?a D A, et al., TiO2-supported metal oxide catalysts for low- temperature selective catalyticreduction of NO with NH3:I.Evaluation and characterization of first row transition metals[J].Journal of Catal,2004,221(2):421-431.
[38] Jin R B, et al., Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ceoxides,supported on TiO2 and Al2O3:a comparative study.[J].Chemosphere, 2010, 78(9):1160-1166.
[39] 刘炜等.Ce-Mn/TiO2 催化剂选择性催化还原 NO 的低温活性及抗毒化性能[J].环境科学学报,2006,26(8):1240-1245W, L, et al., Ce-Mn/TiO2 catalyst for selective catalytic reduction of low temperature activityand anti-poisoning performance of NO [J]. Journal of Environmental Science, 2006, 26 (8):1240-1245
[40] 李晨露等.Mn 基低温 SCR 催化剂的抗 H2O、抗 SO2 研究进展[J].化工进展, 2017,36(3):934-943.CH L,L, et al., Research progress of H2O and SO2 resistance of Mn-based low-temperatureSCR catalyst [J]. Chemical Industry and Engineering Progress, 2017, 36 (3): 934-943.
[41] P, S, et al., H2O and SO2,deactivation mechanism of MnO/MWCNTs for low-temperatureSCR of Nox with NH3[J].Journal of Molecular Catalysis A Chemical, 2013, 377:154-161.
[42] Topsoee N Y, et al.,ChemInform Abstract:The Influence of Water on the Reactivity ofVanadia/Titania for Catalytic Reduction of NOx[J].Cheminform,1992,23(29):no-no.
[43] Xiong S, et al.,The mechanism of the effect of H2O on the low temperature selective catalyticreduction of NO with NH3 over Mn-Fe spinel[J].Catal Sci Techno,2015, 5(4): 2132-2140.
[44] H, Z, et al., Combined effect of H2O and SO2,on V2O5/AC catalysts for NO reduction withammonia at lower temperatures[J]. Appl Catal B Environ, 2002, 39(4):361-368.
[45] Amiridis M D, et al.,Reactivity of V2O5 Catalysts for the Selective Catalytic Reduction ofNO by NH3 :Influence of Vanadia Loading,H2O and SO2[J].Journal of Catal,1996,161(1):247-253.
[46] C Z, W, et al., Effect of iron doping on SO2 and H2Oresistance of honeycomb cordieritebased Mn-Ce/Al2O3,catalyst for NO removal at low temperature[J]. Research on ChemicalIntermediates,2018,44(3):1-16.
[47] J, L, et al., Chang H,Ma L,et al.Low-temperature selective catalytic reduction of NOx, withNH3,over metal oxide and zeolite catalysts-A review[J].Catal Today,2011,175(1):147-156.
[48] G, Q, et al., MnOx -CeO2,mixed oxides prepared by co-precipitation for selective catalyticreduction of NO with NH3,at low temperatures[J].Appl Catal B Environ,2004, 51(2):93-106.
[49] Z, L, et al.,Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalystat low temperatures, Catal. Today 216 (2013) 76-81.
[50] Z. CH, et al., Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Fe-MnMixed-Oxide Catalysts Containing Fe3Mn3O8 Phase, Ind. Eng. Chem. Res. 51 (2011)202-212.
[51] D. M, et al., A Highly Effective Catalyst of Sm-MnOx for the NH3-SCR of NOx at LowTemperature: Promotional Role of Sm and Its Catalytic Performance, ACS Catal. 5 (2015)5973-5983.
[52] J. Y, et al., The pilot demonstration of a honeycomb catalyst for the DeNO of lowtemperature flue gas from an industrial coking plant, Fuel 219 (2018) 37-49.
[53] X. Y, et al., Enhancing the deNO performance of MnO/CeO2-ZrO2 nanorod catalyst forlow-temperature NH3-SCR by TiO2 modification, Che. Eng. J. 369 (2019) 46-56.
[54] N. Macleod, et al., A comparison of sodium-modified Rh/γ-AlO and Pd/γ-AlO catalystsoperated under simulated TWC conditions, Appl. Catal., B 33(2001) 335-343.
[55] N. Macleod, et al., Lean NOx reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3catalysts, Appl. Catal., B 35(2002) 269-279.
[56] P G. Smirniotis, et al., Low-Temperature Selective Catalytic Reduction (SCR) of NO withNH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2, Angew. Chem. Int. Ed.40(2001):2479-2482.
[57] C Z, W, et al., Effect of iron doping on SO2 and H2O resistance of honeycomb cordieritebased Mn-Ce/Al2O3 catalyst for NO removal at low temperature, Res. Chem. Intermed. 44(2018) 3135-3150.
[58] F, L, et al., Selective catalytic reduction of NO with NH3 over manganese substituted irontitanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study, Catal.Today 153 (2010) 70-76.
[59] G, ZH, et al., In situ DRIFTS study of NO reduction by NH3 over Fe-Ce-Mn/ZSM-5 catalysts. Catal Today 2011, 175 (1), 157-163.
[60] L, Z, et al., Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalystat low temperatures. Catalysis Today 2013, 216, 76-81.
[61] C, L, et al., A comparative study of MOx (M = Mn, Co and Cu) modifications over CePO4catalysts for selective catalytic reduction of NO with NH3. J Hazard Mater 2019, 363,439-446.
[62] X, Y, et al., Enhancing the deNO performance of MnO/CeO2-ZrO2 nanorod catalyst forlow-temperature NH3-SCR by TiO2 modification. Chem Engineer Jour 2019, 369, 46-56.
[63] H, L, et al., Improved activity and significant SO2 tolerance of samarium modifiedCeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl Catal B: Environ2019, 244, 671-683.
[64] C, W, et al., Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycombcatalyst and application in selective catalytic reduction of NOx with NH3 at 50-150?°C. CheEngineer Jour 2018, 346, 182-192.
[65] F, L, et al., Selective catalytic reduction of NO with NH3 over manganese substituted irontitanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study. Catal Today2010, 153 (3-4), 70-76.
[66] S, M, et al., Synergistic effect of Cu2+ doping and sulfation in Cu-Ce-S, tolerance to H2O andSO2 and decomposition behaviors of ammonia salts. Molecular Catalysis 2018, 459, 135-140.
[67] W, Z, et al., DRIFT study of manganese/titania-based catalysts for low-temperature selectivecatalytic reduction of NO with NH3.[J]. Environ Scie Tech, 2007, 41(16):5812.
[68] L, Y, et al., Role of CTAB in the improved H2O resistance for selective catalytic reduction ofNO with NH3 over iron titanium catalyst. Chemical Engineering Journal 2018, 347, 313-321.
[69] Z, Z, et al., Promotional effect of Mn modification on DeNOx performance of Fe/nickel foamcatalyst at low temperature[J]. Environ Sci Pollut Res, 2019.
[70] C, T, et al., Ceria-based catalysts for low-temperature selective catalytic reduction of NOwith NH3[J]. Catal Sci Technology, 2016, 6.
[71] G, Q, et al., MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalyticreduction of NO with NH3 at low temperatures[J]. Appl Catal B Environ, 2004, 51(2):93-106.
[72] K, M, et al., Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. CatalToday, 2006, 111(3):236-241.
[73] Y, S, et al., Low-Temperature Selective Catalytic Reduction of NO with NH3 over Fe-Ce-OxCatalysts[J]. Transactions of Tianjin University, 2017, 23(1):35-42.
[74] C Z, W et al., Effect of iron doping on SO2 and H2O resistance of honeycombcordierite-based Mn-Ce/Al2O3 catalyst for NO removal at low temperature[J]. Research onChemical Intermediates, 2018,44(5):3135-50[75] X, G, et al., Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-firedsystems[J]. Appl Catal B Environ, 2009, 92(1-2):30-40.
[76] J, Y, et al., The pilot demonstration of a honeycomb catalyst for the DeNOx, of lowtemperature flue gas from an industrial coking plant[J]. Fuel, 2018, 219:37-49.
[77] Y, ZH, et al., Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants:Elucidation of mechanisms by lab- and pilot-scale experiments[J]. Appl Catal B Environ,2008, 83(3):186-194.