学术堂首页 | 文献求助论文范文 | 论文题目 | 参考文献 | 开题报告 | 论文格式 | 摘要提纲 | 论文致谢 | 论文查重 | 论文答辩 | 论文发表 | 期刊杂志 | 论文写作 | 论文PPT
学术堂专业论文学习平台您当前的位置:学术堂 > 经济学论文 > 区域经济学论文

运用空间计量模型研究1990~2011年中国全要素生产率

来源:学术堂 作者:韩老师
发布于:2014-05-10 共7344字
论文摘要

  在有关区域经济问题的研究中,一个难以回避的问题是区域间的空间相关性,“几乎所有的空间数据都具有空间依赖性或空间自相关的特征”.

  近年来在研究中国经济的问题时,学者们也考虑了空间自相关和空间异质性,如区域经济增长的空间溢出效应,大陆省级区域工业全要素生产率的空间外部性,外资在中国地区内和地区之间的溢出效果,城市效率的空间溢出效应,交通基础设施的空间溢出效应等.总之,已有诸多文献表明,一个地区的增长,其溢出可能并不会限于该地区的地理范围。新经济地理也强调地区间溢出的重要性,正如学者所指出的“没有理由断言一个企业的溢出因为地理或者行政边界的原因只会停留在该企业初始投资的地区”.从这个意义上说,全要素生产率也可能是存在空间溢出的,即一个地区在其经济效率提升的过程中会带动周边区域经济效率的提升。

  本文旨在探究中国省域区域全要素生产率空间溢出关联效应,从空间层面探查其影响因素。

  1 研究方法及数据
  
  1.1 研究方法
  本文采用DEA中非参数的Malmquist指数方法来计算中国全要素生产率的空间分异情况。

  Caves 等所定义的公式为:【公式1】论文摘要

  式中,Dt0(xt,yt) 和 Dt+10(xt+1,yt+1) 是分别根据生产点在相同时间段(即t和t+1)同前沿面技术相比较得到的输出距离函数,Dt+10(xt+1,yt+1) 和 Dt0(xt,yt)分别是根据生产点在混合期间同前沿面技术相比较得到的输出距离函数。

  为避免随意选择一种参数技术,Fare 等并对式(1)进行了分解,其形式为:【公式2】
论文摘要

  式(2)中,等号后的第一项测算技术效率面向产出指标在区间t和t+1的(逐渐趋近于生产前沿面)变化,而根号里的项作为技术变化指标,是前沿面在区间t和t+1变化的几何平均值。

  1.2 数据来源
  由于港澳台地区的数据难以获得,仅以中国内陆31个省份为研究地域单元,选定资本和劳动力2种要素作为Malmquist指数模型的投入变量,以各省的GDP作为产出变量。

  (1)固定资本存量(K)。本文采用永续盘存法对各省的资本存量进行估算,计算公式为:Kit=Kit-1(1-δ)+Iit/pt,其中δ为折旧率;pt为以1990年为基期计算的固定资产价格指数。对于基年资本存量,本文采用Young的研究方法,用基年固定资产投资额除以10%作为初始资本存量,折旧率δ设定为6%,借鉴的是 Hall 等计算世界127个国家资本存量的做法。关于固定投资序列的平减指数,由于官方并没有公布1990~1992年,投资序列的平减指数,因此采用全国各省GDP 的价格指数平减;1992年以后,则可以在《中国固定资产投资统计数典》中得到各省的固定资本投资平减指数,数据来自于《中国国内生产总值核算历史资料(1952~2004)》和 2006~2012 年的《中国统计年鉴》。

  (2)劳动力(L)。本文用各分省就业人员数表示,包括16周岁及以上,从事一定社会劳动并取得劳动报酬或经营收入的人员数,数据来源于相关年份的《中国统计年鉴》。

  (3)产出变量GDP,以1990年为基期,用其省份各年GDP平减指数进行平滑调整。数据出自《中国国内生产总值核算历史资料(1952~2004)》和2006~2012年的《中国统计年鉴》。

  此外,由于行政区划及统计方面的原因,个别变量数据在个别年份是有所遗漏或者缺失的,研究过程中均对缺失的数据进行了测算补漏。

  2 全要素生产率的空间格局及其集群特征分析
  
  为了研究中国省域全要生产率的空间溢出关联及其变化根源,首先运用DEAP2.1软件,计算每个省的全要素生产率逐年变化的情况。然后对中国全要素生产率的空间格局及其空间溢出等进行分析;并对1990~2011年全要素生产率进行地理空间格局的分位图描述,采用空间自相关指数Mo-ran's I 及局域 Moran's I 散点图来刻画中国省域全要素生产率是否存在自相关及集群现象;最后对省域全要素生产率进行空间自相关空间关联局域指标LISA分析,从而揭示全要素生产率的空间格局及局域集群特征。

  2.1 全要素生产率的空间分布演进
  为了简化分析,同时考虑到时间的间隔,这里选取其中的5个年份进行分析。图1是中国31个省份1991、1996、2001、2006和2011年全要素生产率变化的地理空间上的四分位图。【图1】
论文摘要

  图1可以清楚地看出,各省域全要素生产率的空间分布倾向于遵循某种明确的空间分布模式,其中一个显着的特点是全要素生产率的空间格局呈现波动,有相当数量省份的全要素生产率是在空间上集聚的。即高全要素生产率和高全要素生产率;低全要素生产率与低全要素生产率在空间上相邻或者集聚特性。在这5 a中,全要素生产率位列第一级的省份均为7个,而位列第二、三、四级的省份分别为8个。

  2.2 全要素生产率的空间依赖性
  Moran's I指数检验通过初步分析发现,中国省域的区域全要素生产率是存在空间关联的。利用1990~2011年中国31 个省份全要素生产率变动指数的数据及空间自相关指数计算公式,并采用空间邻近矩阵(4个,即k=4)计算得到1990~2011全要素生产率的Moran'sI指数。从计算结果可以看出,1990~2011年中国省域全要素生产率在大部分年份呈现了空间自相关性,并大部分年份通过了10%的显着性检验。表明了22 a间中国省域全要素生产率具有明显的相关性,区域全要素生产率并不是完全的随机状态,是受到其它区域影响的;当然也有部分年份(1994、1995、1996 年)全要素生产率的 Moran's I 指数为负,而且未通过显着性检验。

  为进一步探查中国内陆31个省份全要素生产率的空间关联性,利用Geoda095I软件做出1991、1996、2001、2006 和 2011 年的 Moran's I 散点图(图2)。 图 2 的 Moran's I 散 点 图 可 以 发 现 HL(High-Low)类型和LH(Low-High)类型的省份为偏离全域正的空间自相关的省份,其省份的全要素生产率表现为非典型性。其中,第I象限为HH:(高全要素生产率-高空间滞后)表征高全要素生产率的省域被高全要素生产率的邻近省份所包围,为高全要素生产率集群的省份;第Ⅱ象限LH(低全要素生产率-高空间滞后)表征低全要素生产率的省份被高全要素生产率的临近省份所包围;第Ⅲ象限为LL(低全要素生产率-低空间滞后)代表低全要素生产率的省份被低全要素生产率的临近省份所包围,为低全要素生产率的集群省域;第Ⅳ象限HL(高全要素生产率-低空间滞后)表征高全要素生产率的省域被低全要素生产率的临近省域所包围。【图2】
论文摘要

  2.3 全要素生产率的空间关联局域 LISA 分析
  由于Moran's I散点图检验空间自相关性有很大的局限性,存在无法科学揭示每一方向的局域空间相关性和异质性。因此当需要进一步考虑观测值是否存在局域的空间集聚,需要利用反映空间关联的局域指数(local indicators of spatial associa-tion,LISA)来更为直观地刻画各区域全要素生产率的局域空间相互依赖性及空间异质性特征.图3是中国31个省域1991、1996、2001、2006和2011年的LISA集聚图,且均通过了5%以下的显着性水平。【图3】
论文摘要

  由图3可以看出:① 1991年,以北京为核心,包括河北、山西和陕西省在内的省域倾向于分布在第Ⅰ象限(HH);湖南、贵州、广西和广东以及海南省倾向于分布在第Ⅲ象限(LL)。② 1996年,河南和陕西省在内的省域倾向于分布在第Ⅲ象限(LL);四川省倾向于分布在第Ⅳ象限(HL);贵州省倾向于分布在第Ⅱ象限(LH)。③ 2001年,内蒙古、山东、江苏、安徽、上海、浙江、福建这7个省域倾向于分布在第Ⅰ象限(HH);甘肃、宁夏、四川、重庆、贵州、云南省倾向于分布在第三象限(LL)。④ 2006年,辽宁、天津、山东、江苏、上海、浙江和安徽省域倾向于分布在第Ⅰ象限(HH);四川省倾向于分布在第Ⅲ象限(LL);云南省倾向于分布在第Ⅳ象限(HL);内蒙古倾向于分布在第Ⅱ象限(LH)。⑤ 2011年,内蒙古、吉林、辽宁、北京、河北和山东省倾向于分布在第Ⅰ象限,即属于HH;黑龙江省倾向于分布在第Ⅱ象限(LH);陕西和青海省倾向于分布在第Ⅲ象限(LL);新疆倾向于分布在第Ⅳ象限(HL)。

  研究表明,中国省域全要素生产率存在显着的空间自相关性及空间依赖性,即一个地区在其全要素生产率提升的过程中,也将会带动周边其它区域全要素生产率的提升。

  3 全要素生产率影响因素的空间面板估计
  
  3.1 变量的选择及其解释
  全要素生产率的影响因素是多方面的,本文着重考虑经济集聚(Aggi,t)、人力资本(Humi,t)、经济开放(Openi,t)、产业结构(Indusi,t)、信息化(Infori,t)、基础设施(Infrai,t)、土地投入(LSi,t)、政府对经济的干预(Govi,t)及制度因素(Insi,t)的制约。

  从经济的集聚来看,经济的集聚可以提升全要素生产率,这里采用区位基尼系数来衡量经济的集聚水平。其值越大,表明产业集聚程度越高。借鉴 Wen的算法,用一个简单的公式【公式3】
论文摘要
    可以方便地计算区位基尼系数,其中 λsi和 λsj分别表示地区i和j的第二、三产业从业人员数占全国总从业人员数的比重。从人力资本方面来看,人力资本对全要素生产率的影响体现在劳动者自身劳动生产率的提高,以及劳动者个人人力资本积累会对他人劳动生产率提高产生引致的作用。本文以各地区16岁以上人口平均受正规教育年数来表示人力资本。

  在信息化方面,信息化能够加快组织决策的速度和对市场变化的反应能力,降低信息成本。本文采用邮政电信业务量加总构成。从产业结构来看,产业结构的不断革新和合理化可以提高全要素生产率。本文使用第三产业产值占总产出的比例来表示产业结构。从基础设施方面来看,一些经济性的基础设施均具有规模效应和网络化的效应,这种效应可以通过提高产出效率促进经济增长。文章采用人均铺装道路面积来表示。土地投入方面,土地投入的多少会影响土地利用的集约度,进而影响土地产出率。本文采用城市建成区面积来表示土地投入。从经济的开放方面来看,开放可以带来生产技术、管理经验等其它资源。

  这里采用外商投资企业年末投资总额来表示。政府的干预表征的是政府出台相关政策对经济进行指导,采用支出法GDP中政府消费支出占最终消费支出的百分比来表示。从制度层面来看,制度的变革和创新是提高全要素生产率的重要途径和能动因素。这里以工业总产值中非国有企业比重来表示,用以反映民营资本的活跃程度及市场化程度。

  各个变量的数据来源与前述一致,支出法GDP 中政府消费支出占最终消费支出的百分比的相关数据出自《中国国内生产总值核算历史资料(1952~2004)》和2006~2012年的《中国统计年鉴》;人力资本存量数据来源于相关年份的《中国人口统计年鉴》;其余的数据均来自《新中国五十五年统计资料汇编》、相关年份《中国统计年鉴》和分省统计年鉴。同样对缺失的数据进行了测算补漏。

  3.2 计量模型构建
  为了探究全要素生产率的区域差异,建立如下的空间滞后和空间误差面板模型。

  (1)空间滞后面板模型(Spatial Lag Panel Da-ta Model,SLPDM)【公式4】
论文摘要

  式(3)与式(4)的被解释变量是全要素生产率的对数,用全要素生产率的滞后项来控制初始条件对全要素生产率的影响,用f这个地区固定效应来控制区域条件对全要素生产率的影响;ρ表示空间回归系数;β1、β2、β3、β4、β5、β6、β7、β8和β9分别表示经济集聚、政府作用、人力资本、产业结构、信息化、基础设施、制度因素、对外开放、土地投入的弹性系数,WlnTFPi,t是全要素生产率的空间滞后变量,用来度量地理空间上邻近地区的外部效率溢出,是一个区域在地理邻近上的i区域t时期经济效率影响因素变量的加权和;μi,t为随机扰动项;式(4)中,参数 λ 用来衡量样本观测值的误差项引进的一个区域间溢出成分。

  3.3 计量结果及分析
  首先,需要对选择使用何种模型进行检验。

  根据Anselin提出的判别使用何种模型的准则,即用Lagrange Multiplie(rLM)测试来观测空间滞后模型的LMLAG值和空间误差模型的LMERR值到底何者显着,显着的则是要采用的回归模型。如果两者都显着,则需要进一步进行RobustLMLAG 与 Robust LMERR 检验,观察何者较为显着来判断两个模型哪个较为适合。

  表1中的拉格朗日乘数误差和滞后及其稳健性检验表明:LMLAG 比 LMERR 更加显着,且R-LMLAG 的显着性水平更高,而 R-LMERR 不显着。因此,空间面板滞后模型(SLPDM)是更加适合的模型形式。而且,通过比较 SLPDM 的 R2(0.265)和SEPDM的R2(0.221)值,以及结合AIC,SC 的值,也可以看出 SLPDM 是最为适合的模型。【表1】
论文摘要
  
  这里,采用固定效应的空间误差和空间滞后模型来进行估计,表2的空间计量结果显示,SLP-DM 的空间滞后估计参数ρ通过 1%以下的显着性检验,表明全要素生产率在各个区域之间存在空间溢出效应;SEPDM的空间误差估计参数 λ 通过了5%以下的显着性检验,表明全要素生产率存在较强的空间依赖作用。

  表2的估计结果显示了经济集聚、人力资本水平、信息化水平、经济开放度及制度因素对全要素生产率的影响为正,政府的干预、产业结构和土地投入对全要素生产率的影响为负;但是基础设施水平对全要素生产率的影响并不显着。从经济集聚来看,研究结果与一些研究者的结论相似,即经济集聚水平越高,全要素生产率会得到改善.政府的干预对全要素生产率的影响为负,这一结果与Hu等的研究结果是一致的;此外,已有研究发现,政府往往通过影响人力资本进一步的对技术进步产生影响,从而对经济效率产生影响.从人力资本方面看,许多经济理论认为人力资本水平显着促进全要素生产率的提升。Nelson等认为人力资本通过技术溢出促进全要素生产率的提高,Philippe等认为人力资本可以促进国内技术的革新来促进生产率的增长。研究结果进一步支持了一些学者关于人力资本显着提升全要素生产率的结论.人力资本对经济增长与效率的提升有着显着地积极作用,并表现一定程度的溢出。这是因为人力资本的提升可以使得劳动力与资本能够更为有效的结合,从而促进产出的增加。在产业结构方面,发现产业结构对全要素生产率的影响为负,这说明中国产业结构可能存在不合理的地方。因此,政府需要继续转变经济增长方式,调整产业结构,大力发展现代服务业。【表2】
论文摘要

  研究发现信息化水平对全要素生产率的影响为正。信息化水平有助于减少企业的信息成本,加快企业间的交流和沟通,从而提高经济的运行效率。在基础设施方面,基础设施作为一种投资既可以直接促进经济增长,又可以通过溢出效应间接地促进经济增长.研究结果支持基础设施水平对全要素生产率的影响为正的结论,但是计量结果在统计学意义上并不显着。这可能与选定的指标有关。因此,基础设施对经济效率的促进作用还有待进一步探讨。

  研究表明了民营化所占比重的提升对于全要素生产率的改进是显着的,这恰好解释了经济制度能够解释经济的增长;因为私有化致使企业的权力下放有助于提高技术效率,而且制度质量似乎是导致效率驱动型经济增长的主要决定因素之一.同时,研究结果还说明了中国的经济制度对经济增长效率的提高作用是正向的,即中国经济制度演进与经济增长效率方向具有统一性.

  研究还表明了经济开放水平显着提升了中国的全要素生产率,因为经济的往来可以引进国外一些先进管理经验,同时也促进区域间的竞争,从而提高效率.研究还表明了,由于部分区域土地投入规模过大而出现规模不经济的问题。因此,全要素生产率的提升不应该建立在大规模圈地征地和城市扩建上,各个省份应结合土地利用的实际情况,加大土地集约利用力度,盘活低效率用地。

  4 结论与政策涵义
  
  1990~2011 年,中国各省域全要素生产率的空间分布倾向于遵循某种明确的空间分布模式,其中一个显着的特点是全要素生产率的空间格局呈现波动,有相当数量省份的全要素生产率是在空间上集聚的。在不同的年份,区域的全要素生产率出现了集群的特征,并存在空间关联。

  对中国31个省份的全要素生产率进行全域空间相关性分析发现,Moran's I指数存在巨大的波动。在这22 a间,19年省域全要素生产率的Mo-ran's I 指数为正,说明在这些年,中国内陆 31 个省份全要素生产率在地理空间上存在空间依赖性,全要素生产率在空间分布上不是随机的。通过对全要素生产率的局域空间LISA分析,发现中国省域全要素生产率的显着性水平在不同的年份呈现不同的分布状态。进一步运用空间面板模型对全要素生产率的影响因素进行分析,估计结果显示了经济集聚、人力资本水平、信息化水平、经济开放度及制度因素对全要素生产率的影响为正,政府的干预、产业结构和土地投入对全要素生产率的影响为负;但是基础设施水平对全要素生产率的影响并不显着。

  研究发现了全要素生产率在各个地区间溢出效应的证据,对各个地方政府制定经济发展战略及政策有着重要的启示意义。具体说来,各个地方政府在统筹区域经济发展战略或者区域政策的过程中,不仅要考虑自身区域的特点,还要考虑外部区域之溢出效应对本地区发展可能产生的影响。这就需要政府部门打破目前行政区经济的界限,实现跨区域的协调与合作,实现共赢,最终实现所有地区全要素生产率的提高。

  参考文献:
  [1] Anselin I,Bera A.Spatial dependence in linear regression mod-els with an introduction to spatial econometrics[M]//Aman U,David G.Hand book of Applied Economic Statistics.New York:Marcel Dekker,1998:237-289.
  [2] Brun J F,Combes J L,Renard M F.Are there spillover effects be-tween the coastal and non-coastal regions in China?[J]. ChinaEconomic Review,2002,13(2):161-169.
  [3] Ying L G.Understanding China's recent growth experience :Aspatial econometric perspective[J].The Annals of Regional Sci-ence,2003,37(4):613-628.
  [4] 潘文卿。中国的区域关联与经济增长的空间溢出效应[J].经济研究,2012,(1):54~65.
  [5] 薄文广,安虎森。中国被分割的区域经济运行空间--基于区际增长溢出效应差异性的研究[J].财经研究,2010,(3):77~89.
  [6] Groenewold N,Lee G,Chen A.Inter-regional spillovers in China:The importance of common shocks and the definition of the re-gions[J].China Economic Review,2008,19(1):32-52.
  [7] 吴玉鸣,李建霞。中国区域工业全要素生产率的空间计量经济分析[J].地理科学,2006,26(8):385~391.
  [8] 张战仁,杜德斌。在华跨国公司研发投资集聚的空间溢出效应及区位决定因素--基于中国省市数据的空间计量经济研究[J].地理科学,2010,30(1):15~21.
  [9] 钟昌标。外商直接投资地区间溢出效应研究[J].经济研究,2010,(1):80~89.
  [10] 刘建国。城市效率的影响因素及其溢出效应--基于东北三省34个城市的分析[J].中国区域经济,2010,2(5):31~45.
  [11] 张学良。中国交通基础设施促进了区域经济增长吗--兼论交通基础设施的空间溢出效应[J].中国社会科学,2012,(3):60~77,206.

相关标签:
  • 报警平台
  • 网络监察
  • 备案信息
  • 举报中心
  • 传播文明
  • 诚信网站