学术堂首页 | 文献求助论文范文 | 论文题目 | 参考文献 | 开题报告 | 论文格式 | 摘要提纲 | 论文致谢 | 论文查重 | 论文答辩 | 论文发表 | 期刊杂志 | 论文写作 | 论文PPT
学术堂专业论文学习平台您当前的位置:学术堂 > 农学论文 > 农艺学论文

土壤有机碳矿化对温度敏的感性问题探究(6)

来源:生态学报 作者:黄锦学;熊德成;刘小飞
发布于:2017-06-27 共24491字
  [6] 魏书精,罗碧珍,魏书威,孙龙,正敏,胡海清。 森林生态系统土壤呼吸测定方法研究进展。 生态环境学报,2014,23( 3) : 504-514.  
  [7] Sheng H,Yang Y S,Yang Z J,Chen G S,Xie J S,Guo J F,Zou S Q. The dynamic response of soil respiration to land-use changes in subtropicalChina. Global Change Biology,2010,16( 3) : 1107-1121.  
  [8] Mi J,Li J J,Chen D M,Xie Y C,Bai Y F. Predominant control of moisture on soil organic carbon mineralization across a broad range of arid andsemiarid ecosystems on the Mongolia plateau. Landscape Ecology,2015,30( 9) : 1683-1699.  
  [9] Liang N S,Inoue G,Fujinuma Y. A multichannel automated chamber system for continuous measurement of forest soil CO2efflux. Tree Physiology,2003,23( 12) : 825-832.  
  [10] Koskinen M,Minkkinen K,Ojanen P,K?m?r?inen M,Laurila T,Lohila A. Measurements of CO2exchange with an automated chamber systemthroughout the year: challenges in measuring night-time respiration on porous peat soil. Biogeosciences,2014,11( 2) : 347-363.  
  [11] Rey A. Mind the gap: non-biological processes contributing to soil CO2efflux. Global Change Biology,2015,21( 5) : 1752-1761. 
  [12] Sun S H,Liu J J,Chang S X. Temperature sensitivity of soil carbon and nitrogen mineralization: impacts of nitrogen species and land use type.Plant and Soil,2013,372( 1 /2) : 597-608.  
  [13] Rabbi S M F,Wilson B R,Lockwood P V,Daniel H,Young I M. Aggregate hierarchy and carbon mineralization in two Oxisols of New SouthWales,Australia. Soil and Tillage Research,2015,146: 193-203.  
  [14] Tian Q X,He H B,Cheng W X,Bai Z,Wang Y,Zhang X D. Factors controlling soil organic carbon stability along a temperate forest altitudinalgradient. Scientific Reports,2016,6: 18783.  
  [15] Hamdi S,Chevallier T,A?ssa N B,Hammouda M,Gallali T,Chotte J L,Bernoux M. Short-term temperature dependence of heterotrophic soilrespiration after one-month of pre-incubation at different temperatures. Soil Biology and Biochemistry,2011,43( 9) : 1752-1758.  
  [16] Fissore C,Giardina C P,Kolka R K. Reduced substrate supply limits the temperature response of soil organic carbon decomposition. Soil Biologyand Biochemistry,2013,67: 306-311. 
  [17] Zhu B,Cheng W X. Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbondecomposition. Soil Biology and Biochemistry,2011,43( 4) : 866-869.  
  [18] Ci E,Al-Kaisi M M,Wang L G,Ding C H,Xie D T. Soil organic carbon mineralization as affected by cyclical temperature fluctuations in a karstregion of southwestern China. Pedosphere,2015,25( 4) : 512-523.  
  [19] Mondini C,Sinicco T,Cayuela M L,Sanchez-Monedero M A. A simple automated system for measuring soil respiration by gas chromatography.Talanta,2010,81( 3) : 849-855.  
  [20] Laudicina V A,Benhua S,Dennis P G,Badalucco L,Rushton S P,Newsham K K,O'Donnell A G,Partley L P,Hopkins D W. Responses toincreases in temperature of heterotrophic micro-organisms in soils from the maritime Antarctic. Polar Biology,2015,38( 8) : 1153-1160。
        [21] Reichstein M,Subke J A,Angeli A C,Tenhunen J D. Does the temperature sensitivity of decomposition of soil organic matter depend upon watercontent,soil horizon,or incubation time? Global Change Biology,2005,11( 10) : 1754-1767.
  [22] Jagadamma S,Mayes M A,Steinweg J M,Schaeffer S M. Substrate quality alters the microbial mineralization of added substrate and soil organiccarbon. Biogeosciences,2014,11( 17) : 4665-4678.  
  [23] Phillips R L,Wick A F,Liebig M A,West M S,Daniels W L. Biogenic emissions of CO2and N2O at multiple depths increase exponentiallyduring a simulated soil thaw for a northern prairie Mollisol. Soil Biology and Biochemistry,2012,45: 14-22.  
  [24] Guo X B,Drury C F,Reynolds W D,Yang X M,Fan R Q. Nitrous oxide and carbon dioxide emissions from aerobic and anaerobic incubations:effect of core length. Soil Science Society of America Journal,2013,77( 3) : 817-829.  
  [25] Arevalo C B M,Chang S X,Bhatti J S,Sidders D. Mineralization potential and temperature sensitivity of soil organic carbon under different landuses in the parkland region of Alberta,Canada. Soil Science Society of America Journal,2012,76( 1) : 241-251.  
  [26] Ding F,Huang Y,Sun W J,Jiang G F,Chen Y. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than incoarse particles: an incubation study with temperate grassland and forest soils in northern China. PLoS One,2014,9( 7) : e103801.  
  [27] Plante A F,Conant R T,Carlson J,Greenwood R,Shulman J M,Haddix M L,Paul E A. Decomposition temperature sensitivity of isolated soilorganic matter fractions. Soil Biology and Biochemistry,2010,42( 11) : 1991-1996.  
  [28] Xu X,Zhou Y,Ruan H H,Luo Y Q,Wang J S. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevationalgradient in the Wuyi Mountains,China. Soil Biology and Biochemistry,2010,42( 10) : 1811-1815.  
  [29] Lefèvre R,Barré P,Moyano F E,Christensen,B T,Bardoux G,Eglin T,Girardin C,Houot S,K?tterer T,Van Oort F,Chenu C. Highertemperature sensitivity for stable than for labile soil organic carbon-evidence from incubations of long-term bare fallow soils. Global Change Biology,2014,20( 2) : 633-640.  
  [30] Von Lützow M,K?gel-Knabner I. Temperature sensitivity of soil organic matter decomposition -what do we know? Biology and Fertility of Soils,2009,46( 1) : 1-15.  
  [31] Leifeld J,Fuhrer J. The temperature response of CO2production from bulk soils and soil fractions is related to soil organic matter quality.Biogeochemistry,2005,75( 3) : 433-453.  
  [32] ?gren G I,Bosatta E. Reconciling differences in predictions of temperature response of soil organic matter. Soil Biology and Biochemistry,2002,34( 1) : 129-132.  
  [33] Wei H,Guenet B,Vicca S,Nunan N,Abdelgawad H,Pouteau V,Shen W J,Janssens I A. Thermal acclimation of organic matter decompositionin an artificial forest soil is related to shifts in microbial community structure. Soil Biology and Biochemistry,2014,71: 1-12.  
  [34] 闫美杰,时伟宇,杜盛。 土壤呼吸测定方法述评与展望。 水土保持研究,2010,17( 6) : 148-152,157-157.  
  [35] 黄锦学。 增温对中亚热带阔叶林和针叶林土壤有机碳矿化的影响[D\〗 . 福州: 福建师范大学,2016.  
  [36] Wagai R,Kishimoto-Mo A W,Yonemura S,Shirato Y,Hiradate S,Yagasaki Y. Linking temperature sensitivity of soil organic matterdecomposition to its molecular structure,accessibility,and microbial physiology. Global Change Biology,2013,19( 4) : 1114-1125.  
  [37] Melillo J M,Steudler P A,Aber J D,Newkirk K,Lux H,Bowles F P,Catricala C,Magill A,Ahrens T,Morrissean S. Soil warming and carbon-cycle feedbacks to the climate system. Science,2002,298( 5601) : 2173-2176.  
  [38] Peng F,You Q G,Xu M H,Zhou X H,Wang J,Guo J,Xue X. Effects of experimental warming on soil respiration and its components in analpine meadow in the permafrost region of the Qinghai-Tibet Plateau. European Journal of Soil Science,2015,66( 1) : 145-154.  
  [39] Bronson D R,Gower S T,Tanner M,Linder S,Van HerK I. Response of soil surface CO2flux in a boreal forest to ecosystem warming. GlobalChange Biology,2008,14( 4) : 856-867. 
  [40] Lu M,Zhou X H,Yang Q,Li H,Luo Y Q,Fang C M,Chen J K,Yang X,Li B. Responses of ecosystem carbon cycle to experimental warming:a meta-analysis. Ecology,2013,94( 3) : 726-738.  
  [41] Wang X,Liu L L,Piao S L,Janssens I A,Tang J W,Lin W X,Chi Y G,Wang J,Xu S. Soil respiration under climate warming: differentialresponse of heterotrophic and autotrophic respiration. Global Change Biology,2014,20( 10) : 3229-3237.  
  [42] 潘新丽,林波,刘庆。 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响。 应用生态学报,2008,19( 8) : 1637-1643.  
  [43] Marchand F L,Nijs I,de Boeck H J,Kockelbergh F,Mertens S,Beyens L. Increased turnover but little change in the carbon balance of high-arctic tundra exposed to whole growing season warming. Arctic,Antarctic,and Alpine Research,2004,36( 3) : 298-307.  
  [44] Saleska S R,Shaw M R,Fischer M L,Dunne J A,Still C J,Holman M L,Harte J. Plant community composition mediates both large transientdecline and predicted long-term recovery of soil carbon under climate warming. Global Biogeochemical Cycles,2002,16( 4) : 3-1-3-18.  
  [45] Xia J Y,Niu S L,Wan S Q. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growingseasons in a temperate steppe. Global Change Biology,2009,15( 6) : 1544-1556.  
  [46] Luo Y Q,Wan S Q,Hui D F,Wallace L L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature,2001,413( 6856) :622-625.  
  [47] Biasi C,Rusalimova O,Meyer H,Kaiser C,Wanek W,Barsukov P,Junger H,Richter A. Temperature-dependent shift from labile to recalcitrantcarbon sources of arctic heterotrophs. Rapid Communications in Mass Spectrometry,2005,19( 11) : 1401-1408.  
  [48] Frey S D,Drijber R,Smith H,Melillo J. Microbial biomass,functional capacity,and community structure after 12 years of soil warming. SoilBiology and Biochemistry,2008,40( 11) : 2904-2907.  
  [49] Billings S A,Ballantyne F. How interactions between microbial resource demands,soil organic matter stoichiometry,and substrate reactivitydetermine the direction and magnitude of soil respiratory responses to warming. Global Change Biology,2013,19( 1) : 90-102.  
  [50] Pietik?inen J,Pettersson M,B??th E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMSMicrobiology Ecology,2005,52( 1) : 49-58.  
  [51] Paz C G,Rodríguez T T,Behan-Pelletier V M,Hill S B,Vidal-Torrado P,Cooper M,van Straaten P,Oertli J J,Wood C W,Hossner L R,Rasmussen W. Field water cycle / / Chesworth W,ed. Encyclopedia of Soil Science. Netherlands: Springer,2008.  
  [52] Schindlbacher A,Rodler A,Kuffner M,Kitzler B,Sessitsch A,Zechmeister-Boltenstern S. Experimental warming effects on the microbialcommunity of a temperate mountain forest soil. Soil Biology and Biochemistry,2011,43( 7) : 1417-1425.  
  [53] Streit K,Hagedorn F,Hiltbrunner D,Portmann M,Saurer M,Buchmann N,Wild B,Richter A,Wipf S,Siegwolf R T W. Soil warming altersmicrobial substrate use in alpine soils. Global Change Biology,2013,20( 4) : 1327-1338.  
  [54] Tucker C L,Bell J,Pendall E,Ogle K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? GlobalChange Biology,2013,19( 1) : 252-263.  
  [55] Schimel J P,Mikan C. Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biology and Biochemistry,2005,37( 8) : 1411-1418.  
  [56] Frey S D,Lee J,Melillo J M,Six J. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change,2013,3( 4) : 395-398.  
  [57] Rousk J,Frey S D,B??th E. Temperature adaptation of bacterial communities in experimentally warmed forest soils. Global Change Biology,2012,18( 10) : 3252-3258.  
  [58] Dawes M A,Hagedorn F,Handa I T,Streit K,Ekblad A,Rixen C,Korner C,Hattenschwiler S. An alpine treeline in a carbon dioxide-richworld: synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia,2013,171( 3) : 623-637.  
  [59] Wallenstein M D,Burns R G. extracellular enzyme activities and organic matter degradation in soil: a complex community driven process/ / Dick RP,ed. Methods of Soil Enzymology. Madison,Wisconsin,USA: Soil Science Society of America Inc,2011: 35-40.  
  [60] 林先贵。 土壤微生物研究原理与方法。 北京: 高等教育出版社,2010.  
  [61] Stone M M,Weiss M S,Goodale C L,Adams M B,Fernandez I J,German D P,Allison S D. Temperature sensitivity of soil enzyme kinetics underN-fertilization in two temperate forests. Global Change Biology,2012,18( 3) : 1173-1184.  
  [62] Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature,2006,440( 7081) :165-173.  
  [63] Grant R F,Rochette P. Soil microbial respiration at different water potentials and temperatures: theory and mathematical modeling. Soil ScienceSociety of America Journal,1994,58( 6) : 1681-1690.  
原文出处:黄锦学,熊德成,刘小飞,杨智杰,谢锦升,杨玉盛. 增温对土壤有机碳矿化的影响研究综述[J]. 生态学报,2017,(01):12-24.
相关标签:
  • 报警平台
  • 网络监察
  • 备案信息
  • 举报中心
  • 传播文明
  • 诚信网站