学术堂首页 | 文献求助论文范文 | 论文题目 | 参考文献 | 开题报告 | 论文格式 | 摘要提纲 | 论文致谢 | 论文查重 | 论文答辩 | 论文发表 | 期刊杂志 | 论文写作 | 论文PPT
学术堂专业论文学习平台您当前的位置:学术堂 > 生物学论文 > 分子生物学论文

赖氨酸乙酰化修饰对代谢的调控(4)

来源:学术堂 作者:朱老师
发布于:2017-04-12 共13686字
  10  Kim S C, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell, 2006,23: 607–618
  11  Huang  W,  Wang  Z,  Lei  Q  Y.  Acetylation  control  of  metabolic  enzymes  in  cancer:  an  updated  version.  Acta  Biochim  Biophys  Sin(Shanghai), 2014, 46: 204–213
  12  Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144: 646–674
  13  Christofk H R, Vander Heiden M G, Wu N, et al. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008, 452: 181–186
  14  Bluemlein  K,  Gruning  N  M,  Feichtinger  R  G,  et  al.  No  evidence  for  a  shift  in  pyruvate  kinase  PKM1  to  PKM2  expression  duringtumorigenesis. Oncotarget, 2011, 2: 393–400
  15  Lv  L,  Li  D,  Zhao  D,  et  al.  Acetylation  targets  the  M2  isoform  of  pyruvate  kinase  for  degradation  through  chaperone-mediated  autophagyand promotes tumor growth. Mol Cell, 2011, 42: 719–730
  16  Lv L, Xu Y P, Zhao D, et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclearlocalization. Mol Cell, 2013, 52: 340–352
  17  Shim H, Dolde C, Lewis B C, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad SciUSA, 1997, 94: 6658–6663
  18  Le  A,  Cooper  C  R,  Gouw  A  M,  et  al.  Inhibition  of  lactate  dehydrogenase  A  induces  oxidative  stress  and  inhibits  tumor  progression.  ProcNatl Acad Sci USA, 2010, 107: 2037–2042
  19  Zhao  D,  Zou  S  W,  Liu  Y,  et  al.  Lysine-5  acetylation  negatively  regulates  lactate  dehydrogenase  A  and  is  decreased  in  pancreatic  cancer.Cancer Cell, 2013, 23: 464–476
  20  Tennant D A, Durán R V, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer, 2010, 10: 267–277
  21  Lin  R,  Tao  R,  Gao  X,  et  al.  Acetylation  stabilizes  ATP-citrate  lyase  to  promote  lipid  biosynthesis  and  tumor  growth.  Mol  Cell, 2013,  51:506–518
  22  Li T, Liu M, Feng X, et al. Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal.J Biol Chem, 2014, 289: 3775–3785
  23  Ventura M, Mateo F, Serratosa J, et al. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int JBiochem Cell Biol, 2010, 42: 1672–1680
  24  Shan  C,  Elf  S,  Ji  Q,  et  al.  Lysine  acetylation  activates  6-phosphogluconate  dehydrogenase  to  promote  tumor  growth.  Mol  Cell,  2014,  55:552–565
  25  Chen S H, Anderson J, Giblett E R, et al. Phosphoglyceric acid mutase: rare genetic variants and tissue distribution. Am J Hum Genet, 1974,26: 73–77
  26  Xu  Y,  Li  F,  Lv  L,  et  al.  Oxidative  stress  activates  SIRT2  to  deacetylate  and  stimulate  phosphoglycerate  mutase.  Cancer  Res,  2014,  74:3630–3642
  27  Hallows  W  C,  Yu  W,  Denu  J  M.  Regulation  of  glycolytic  enzyme  phosphoglycerate  mutase-1  by  Sirt1  protein-mediated  deacetylation.  JBiol Chem, 2012, 287: 3850–3858
  28  Droge W. Free radicals in the physiological control of cell function. Physiol Rev, 2002, 82: 47–95
  29  Qiu X, Brown K, Hirschey M D, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab, 2010,12: 662–667
  30  Chen  Y,  Zhang  J,  Lin  Y,  et  al.  Tumour  suppressor  SIRT3  deacetylates  and  activates  manganese  superoxide  dismutase  to  scavenge  ROS.EMBO Rep, 2011, 12: 534–541
  31  Yu W, Dittenhafer-Reed K E, Denu J M. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redoxstatus. J Biol Chem, 2012, 287: 14078–14086
  32  Someya S, Yu W, Hallows W C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloricrestriction. Cell, 2010, 143: 802–812
  33  Wang  Y  P,  Zhou  L  S,  Zhao  Y  Z,  et  al.  Regulation  of  G6PD  acetylation  by  SIRT2  and  KAT9  modulates  NADPH  homeostasis  and  cellsurvival during oxidative stress. EMBO J, 2014, 33: 1304–1320
  34  Cheng H L, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. ProcNatl Acad Sci USA, 2003, 100: 10794–10799
  35  Alcendor R R, Gao S, Zhai P, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res, 2007, 100: 1512–1521
  36  Alcendor R R, Kirshenbaum L A, Imai S, et al. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is anessential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res, 2004, 95: 971–980
  37  Pillai  J  B,  Chen  M,  Rajamohan  S  B,  et  al.  Activation  of  SIRT1,  a  class  III  histone  deacetylase,  contributes  to  fructose  feeding-mediatedinduction of the alpha-myosin heavy chain expression. Am J Physiol Heart Circ Physiol, 2008, 294: H1388–H1397
  38  Chen Z, Peng I C, Cui X, et al. Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci USA, 2010, 107: 10268–10273
  39  Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of e NOS. Science,2005, 310: 314–317
  40  Yoon H, Shin S H, Shin D H, et al. Differential roles of Sirt1 in HIF-1alpha and HIF-2alpha mediated hypoxic responses. Biochem BiophysRes Commun, 2014, 444: 36–43
  41  Xiong  S,  Salazar  G,  San  Martin  A,  et  al.  PGC-1alpha  serine  570  phosphorylation  and  GCN5-mediated  acetylation  by  angiotensin  II  drivecatalase down-regulation and vascular hypertrophy. J Biol Chem, 2010, 285: 2474–2487
  42  Iyer A, Fairlie D P, Brown L. Lysine acetylation in obesity, diabetes and metabolic disease. Immunol Cell Biol, 2012, 90: 39–46
  43  Zhang T, Wang S, Lin Y, et al. Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metab,2012, 15: 75–87
  44  Rodgers J T, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005,434: 113–118
  45  Susick  L,  Senanayake  T,  Veluthakal  R,  et  al.  A  novel  histone  deacetylase  inhibitor  prevents  IL-1beta  induced  metabolic  dysfunction  inpancreatic beta-cells. J Cell Mol Med, 2009, 13: 1877–1885
  46  Lee  J  H,  Song  M Y,  Song  E  K,  et  al.  Overexpression of  SIRT1 protects  pancreatic beta-cells  against  cytokine  toxicity  by  suppressing  thenuclear factor-kappa B signaling pathway. Diabetes, 2009, 58: 344–351
  47  Banks A S, Kon N, Knight C, et al. Sir T1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab, 2008, 8:333–341
  48  Iyer A, Fairlie D P, Prins J B, et al. Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol, 2010, 6: 71–82
  49  Lagace  D  C,  Nachtigal  M  W.  Inhibition  of  histone  deacetylase  activity  by  valproic  acid  blocks  adipogenesis.  J  Biol  Chem,  2004,  279:18851–18860
  50  Catalioto  R  M,  Maggi  C  A,  Giuliani  S.  Chemically  distinct  HDAC  inhibitors  prevent  adipose  conversion  of  subcutaneous  human  whitepreadipocytes at an early stage of the differentiation program. Exp Cell Res, 2009, 315: 3267–3280
  51  Kim  S  N,  Choi  H  Y,  Kim  Y  K.  Regulation  of  adipocyte  differentiation  by  histone  deacetylase  inhibitors.  Arch  Pharm  Res,  2009,  32:535–541
  52  Picard  F,  Kurtev  M,  Chung  N,  et  al.  Sirt1  promotes  fat  mobilization  in  white  adipocytes  by  repressing  PPAR-gamma.  Nature,  2004,  429:771–776
  53  Jing  E,  Gesta  S,  Kahn  C  R.  SIRT2  regulates  adipocyte  differentiation  through  Fox O1  acetylation/deacetylation.  Cell  Metab,  2007,  6:105–114
  54  Taylor D M, Balabadra U, Xiang Z, et al. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2deacetylase. ACS Chem Biol, 2011, 6: 540–546
  55  Hallows W C, Lee S, Denu J M. Sirtuins deacetylate and activate mammalian acetyl-Co A synthetases. Proc Natl Acad Sci USA, 2006, 103:10230–10235
  56  Kendrick  A  A,  Choudhury  M,  Rahman  S  M,  et  al.  Fatty  liver  is  associated  with  reduced  SIRT3  activity  and  mitochondrial  proteinhyperacetylation. Biochem J, 2011, 433: 505–514
  57  Hirschey  M  D,  Shimazu  T,  Goetzman  E,  et  al.  SIRT3  regulates  mitochondrial  fatty-acid  oxidation  by  reversible  enzyme  deacetylation.Nature, 2010, 464: 121–125
  58  Hallows W C, Yu W, Smith B C, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell, 2011, 41:139–149
  59  Bertrand P. Inside HDAC with HDAC inhibitors. Eur J Med Chem, 2010, 45: 2095–2116
  60  Kroon P A, Iyer A, Chunduri P, et al. The cardiovascular nutrapharmacology of resveratrol: pharmacokinetics, molecular mechanisms andtherapeutic potential. Curr Med Chem, 2010, 17: 2442–2455
  61  Camins  A,  Sureda  F  X,  Junyent  F,  et  al.  Sirtuin  activators:  designing  molecules  to  extend  life  span.  Biochim  Biophys  Acta,  2010,  1799:740–749
  62  Yang X J, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell, 2008, 31: 449–461
  63  Hirschey  M  D,  Shimazu  T,  Capra  J  A,  et  al.  SIRT1  and  SIRT3  deacetylate  homologous  substrates:  Ace CS1,2  and  HMGCS1,2.  Aging(Albany NY), 2011, 3: 635–642
  64  Gelfi  C,  Vasso  M,  Cerretelli  P.  Diversity of  human  skeletal  muscle  in health and disease:  contribution of proteomics. J  Proteomics,  2011,74: 774–795
  65  Kuehl  M,  Stevens  M  J.  Cardiovascular  autonomic  neuropathies  as  complications  of  diabetes  mellitus.  Nat  Rev  Endocrinol,  2012,  8:405–416
相关标签:
  • 报警平台
  • 网络监察
  • 备案信息
  • 举报中心
  • 传播文明
  • 诚信网站