ѧÊõÌÃÊ×Ò³ | ÎÄÏ×ÇóÖúÂÛÎÄ·¶ÎÄ | ÂÛÎÄÌâÄ¿ | ²Î¿¼ÎÄÏ× | ¿ªÌⱨ¸æ | ÂÛÎĸñʽ | ÕªÒªÌá¸Ù | ÂÛÎÄÖÂл | ÂÛÎIJéÖØ | ÂÛÎÄ´ð±ç | ÂÛÎÄ·¢±í | ÆÚ¿¯ÔÓÖ¾ | ÂÛÎÄд×÷ | ÂÛÎÄPPT
ѧÊõÌÃרҵÂÛÎÄѧϰƽ̨Äúµ±Ç°µÄλÖãºÑ§ÊõÌà > ÊýѧÂÛÎÄ > ÊýѧʷÂÛÎÄ

»³¶ûµÂÊýѧ¸ÅÄî½ø»¯ÂÛ˼Ïë¼°Æä¼ÛÖµ

À´Ô´£ºÄÚÃɹÅʦ·¶´óѧѧ±¨(×ÔÈ»¿Æѧºº ×÷ÕߣºÁõÅô·É
·¢²¼ÓÚ£º2020-01-09 ¹²7260×Ö

¡¡¡¡Õª    Òª£º¡¡ÃÀ¹úÊýѧ¼Ò»³¶ûµÂÔÚÍØÆËѧÑо¿ÁìÓò¹±Ï×׿×Å,ºóÀ´¿ªÊ¼¶ÔÊýѧ»ù´¡ÎÊÌâ½øÐÐÕÜѧ˼¿¼.Ëû³¢ÊÔÓÃÎÄ»¯ÈËÀàѧµÄ·½·¨Ñо¿ÊýѧµÄ·¢Õ¹Ê·,°ÑÊýѧ¿´×÷ÊÇÈËÀàÖ÷ÌåÎÄ»¯ÌåϵµÄÒ»¸ö×ÓÎÄ»¯Ìåϵ,°ÑÊýѧ´ÓԭʼÆðÔ´µ½ÏÖ´ú·¢Õ¹µÄÀú³Ì,Ãè»æΪһ¸ö×ÔÈ»µÄÎÄ»¯½ø»¯¹ý³Ì,¸ø³öÁËÊýѧ½ø»¯µÄ¶¯Á¦Óë¹æÂÉ,µÃµ½ÖÚ¶à×ÅÃûÊýѧ¼Ò¡¢ÕÜѧ¼Ò¡¢Àúʷѧ¼ÒºÍÈËÀàѧ¼ÒÆÀÊö,¶ÔÑо¿Êýѧʷ¾ßÓÐÖØÒªµÄÆôʾÒâÒå.

¡¡¡¡¹Ø¼ü´Ê£º¡¡»³¶ûµÂ; Êýѧʷ; Êýѧ½ø»¯ÂÛ;

¡¡¡¡Abstract£º¡¡Wilder is a famous American mathematician who contributed a great deal in the field of topology research.Affected by his interest and study in anthropology,he tried to apply the method of cultural anthropology research to the history of mathematics when he started the philosophical thinking on mathematical basis problem.He looked mathematics as a sub-cultural system in the whole human cultural system and described the mathematical development from the beginning to modern times as a natural process of culture evolution.He revealed the driving forces and laws of mathematics evolution and his thoughts on mathematics evolution were reviewed by many famous mathematicians,philosophers,historians and anthropologists.It would be very inspiring to study the Wilder's theory for our research on the history of mathematics.

¡¡¡¡Keyword£º¡¡Wilder; history of mathematics; mathematical evolution;

¡¡¡¡À×Ãɵ··Ò×˹·»³¶ûµÂ(Raymond Louis Wilder)ÊÇÃÀ¹ú×ÅÃûÍØÆËѧ¼Ò,ÔøÈÎÃÀ¹ú¹ú¼Ò¿ÆѧԺԺʿ¡¢ÃÀ¹úÊýѧ»áÖ÷ϯºÍÃÀ¹úÊýѧЭ»áÖ÷ϯ.1950Äê,ÔÚµÚ11½ìÊÀ½çÊýѧ¼Ò´ó»áÉÏ,»³¶ûµÂµÄ±¨¸æÌâΪ“ÊýѧµÄÎÄ»¯»ù´¡”[1],Ï£Íû´ó¼ÒÄÜ´ÓÎÄ»¯µÄÊÓ½ÇÀ´Àí½âÊýѧÕâÃÅѧ¿Æ.Ö±ÖÁ1982ÄêËûÈ¥ÊÀÇ°,Ò»Ö±ÓÃÎÄ»¯ÈËÀàѧµÄ˼Ïë²ûÊöÊýѧµÄ½ø»¯Ê·,±¾ÎĽ«¼òÒªÐðÊöËûµÄÊýѧ¸ÅÄî½ø»¯ÂÛ˼Ïë,ÒÔ¼°Ïà¹ØѧÕ߶ÔÆä˼ÏëµÄÆÀÊö.

¡¡¡¡1¡¢ Êýѧ¸ÅÄîµÄ½ø»¯

¡¡¡¡1952Äê12ÔÂ29ÈÕÃÀ¹úÊýѧ»áÔÚÃÜËÕÀïÖÝʥ·Ò×˹¾Ù°ì´ó»á,»³¶ûµÂжÈÎרÌâίԱ»á¸±Ö÷ϯʱ×öÁËÑݽ²,ËûÈÏΪ¶ÔÓÚÊýѧ¼ÒÃÇÀ´Ëµ,×îÖØÒªµÄÊÇά³ÖÒ»Ì×±ê×¼ºÍ´«Í³,ÒÔ±£³ÖÊýѧµÄÑÓÐøÓëÔö³¤.ËûµÄ¶¯»úÊÇ̽ÌÖÊýѧ¸ÅÄîµÄÆðÔ´·½Ê½,²¢Ñо¿ÄÇЩ´Ù½øÊýѧ¸ÅÄîÐγɺÍÓ°ÏìÆä½ø»¯µÄÒòËØ.ËûÒÔÊýÓ뼸ºÎ¡¢½âÎö¼¸ºÎ¡¢Î¢»ý·Ö¡¢ÇúÏߵȸÅÄîΪ°¸Àý,ÌÖÂÛÁËÊýѧ¸ÅÄîµÄ½ø»¯Àú³Ì¡¢Ó°ÏìÒòËغÍÉúÃüÖÜÆÚ,ÓÈÆ仹ΪÇúÏßµ½ÍØÆËѧµÄ½ø»¯Àú³Ì»­ÁËÒ»¸öÇåÎúµÄ˼άµ¼Í¼.Ëû¼áÐÅÊýѧ·¢Õ¹µÄ½ø»¯ÌØÕ÷,ÓëÈκνø»¯¹ý³ÌÒ»Ñù,Êýѧ¸ÅÄî½ø»¯¹ý³ÌÖеĻ·¾³Ó°Ïì¡¢ÒÅ´«Ñ¹Á¦²»ÈݺöÊÓ[2].

¡¡¡¡1968Äê,»³¶ûµÂ³ö°æ¡¶Êýѧ¸ÅÄîµÄ½ø»¯: Ò»¸ö³õ²½µÄÑо¿¡·Ò»Êé,ϵͳ½éÉÜÁËÎÄ»¯µÄ¸ÅÄî,Êýѧ×÷ΪһÖÖÎÄ»¯µÄ˼Ïë,ÏêϸµÄÌÖÂÛÁËÊýµÄ½ø»¯¡¢¼¸ºÎµÄ½ø»¯¡¢Êýѧ½ø»¯µÄ¶¯Á¦¡¢Êýѧ½ø»¯µÄ¹æÂÉÓë¹ý³Ì[3].ËûÔøÎÞÊý´ÎÉù³Æ×Ô¼ºÊǸö“Ö±¾õÖ÷ÒåÕß”[4],Òò´Ë¶ÔÓÚÊý¸ÅÄîµÄ½ø»¯,ËûÈÏΪֱ¾õÖ÷Ò彫ȫ²¿Êýѧ¶¼Ó¦¸Ã½¨Á¢ÔÚ×ÔÈ»Êý¼ÆÊýÊý×Ö1¡¢2¡¢3…µÄ»ù´¡ÉÏ,´Ó½ø»¯µÄ¹ÛµãÀ´¿´,ÕâÖÖ¹ÛµãÊÇÓеÀÀíµÄ.»³¶ûµÂ¸ø³öÁË“Êý”¸ÅÄî½ø»¯µÄÀúÊ·½×¶ÎÐòÁÐ,°üº¬ÈçÏÂ12¸ö½×¶Î: Çø±ð1ºÍ2→1¡¢2µ½¶à→¶ÔÏ󼯺ϵıȽÏ(Ò»Ò»¶ÔÓ¦¹Øϵ)→¼ÆÊý→Êý×Ö´Ê→±íÒâÎÄ×Ö→ÉñÃØÖ÷Òå→Êý×Öϵͳ→Êý×ÖÔËËã→ÀíÏëÖ÷Òå→ÐÂÊý×ÖÀàÐÍ(¸´Êý¡¢ÊµÊý¡¢³¬ÏÞÊýµÈ)→Âß¼­¶¨ÒåÓë·ÖÎö.»³¶ûµÂºóÀ´ÔÚÃÀ¹úÊýѧЭ»áµÄÒ»´Î»áÒéÑݽ²Öе÷ÕûÁËÕâ¸öÀúÊ·ÐòÁÐ,¸Ä±äÁËÉñÃØÖ÷ÒåºÍÊý×ÖϵͳµÄÏȺó˳Ðò,²¢°ÑºóÈý¸ö½×¶Î·Ö±ðµ÷ÕûΪ·ÖÊý¡¢ÁãºÍ¸ºÊý¡¢¸´ÊýµÈµÈ[5].
 

»³¶ûµÂÊýѧ¸ÅÄî½ø»¯ÂÛ˼Ïë¼°Æä¼ÛÖµ
 

¡¡¡¡¶ÔÓÚ¼¸ºÎµÄ½ø»¯,»³¶ûµÂÈÏΪ¼¸ºÎºÍ¼¸ºÎ˼ÏëģʽÔÚÕû¸öÊýѧÖеĴ«²¥,¶ÔÊýѧ½ø»¯²úÉúÁËÖØÒªµÄÓ°Ïì,ºÜÄÑÏëÏóûÓм¸ºÎѧµÄÊýѧ»áÊÇʲôÑù,ËüÔÚ·ûºÅ¡¢¸ÅÄîºÍÐÄÀíÒâÒåÉ϶¼¶ÔÊýѧµÄ·¢Õ¹×ö³öÁ˹±Ï×.ÊýѧÒÀÀµÓÚ“Êý”ºÍ“¼¸ºÎ”¸ÅÄîµÄ½ø»¯,¶øÇÒÕâÖÖ½ø»¯±¾ÖÊÉÏÊÇѹÁ¦µÄ²úÎï.»³¶ûµÂÈÏΪÔÚ¹ýÈ¥µÄÁ½¸öÊÀ¼ÍÀï,Ëùν“´¿´âÊýѧ”µÄ·¢Õ¹Ç÷ÊÆÒÔ¼°ÏÖʵÇé¿ö,Ö»²»¹ýÊÇÒ»ÖÖ×ÔÈ»µÄÎÄ»¯½ø»¯[6].»³¶ûµÂ»¹¶ÔÍØÆËѧÖГÁ¬Í¨”¸ÅÄîµÄ½ø»¯½øÐÐÁËÉîÈëÑо¿,²¢ÊÔͼ³ÎÇåÁ¬Í¨¸ÅÄîµÄ¹éÊôȨ.ËûÈÏΪÁ¬Í¨¸ÅÄîµÄÖ±¾õÒâÒå·Ç³£Ã÷ÏÔ,À´Ô´ÓÚ¹ØÓÚÎïÀíÉÏʱ¼ä¡¢¿Õ¼äÓëÎïÖʵÄÌÖÂÛ[7].

¡¡¡¡2¡¢ Êýѧ½ø»¯µÄ¶¯Á¦Óë¹æÂÉ

¡¡¡¡»³¶ûµÂÔÚ¡¶Êýѧ¸ÅÄîµÄ½ø»¯¡·Ò»ÊéÖÐÌá³öÁËÊýѧ½ø»¯µÄ11¸öÖ÷Òª¶¯Á¦,°üÀ¨: (1)»·¾³(ÎïÖʵġ¢ÎÄ»¯µÄ)ѹÁ¦; (2)ÒÅ´«Ñ¹Á¦(°üÀ¨ÄÜÁ¦¡¢ÒâÒå¡¢ÌôÕ½¡¢µØλ¡¢¸ÅÄîѹÁ¦¡¢ã£ÂÛ); (3)·ûºÅ»¯; (4)´«²¥; (5)³éÏó; (6)¸ÅÀ¨; (7)ÕûºÏ; (8)¶àÑù»¯; (9)ÎÄ»¯Öͺó; (10)ÎÄ»¯µÖÖÆ; (11)Ñ¡Ôñ.»³¶ûµÂ¶ÔÕâ11¸ö¶¯Á¦ÒòËØ×öÁË×¢ÊͺÍÆÀÂÛ.ËûÒ²Ö¸³ö,ËäÈ»¶ÔÊýѧ½ø»¯¶¯Á¦µÄÌÖÂÛÊÇ´ÓÀúÊ·¹Ûµã³ö·¢µÄ,µ«²¢²»Òâζ×Å°ÑËùÁи÷ÖÖ¶¯Á¦¿´×÷Êǹ¹³ÉÒ»¸öÀúÊ·ÐòÁеÄ,¸÷ÖÖ¶¯Á¦Í¨³£ÊÇͬʱÆð×÷ÓõÄ.ËûºóÀ´ÓÖÔö¼ÓÁËÒ»¸ö“רҵ»¯”[5],µ«ÔÚÎÄÖв¢Î´½âÊÍ,Ö±µ½×îºóÔÚËûµÄ×Å×÷¡¶Êýѧ×÷ΪһÖÖÎÄ»¯Ìåϵ¡·ÊéÖÐÌÖÂÛ“ÕûºÏ”ʱ,Ö¸³ö“רҵ»¯±ØÈ»µ¼ÖÂÕûºÏ”[8].

¡¡¡¡»³¶ûµÂ½øÒ»²½ÌÖÂÛÕâЩ¶¯Á¦ÊÇÈçºÎÕ¹ÏÖ³öÀ´ÒÔ¼°ËüÃǵÄÍêÕûÐÔ,²¢¸ø³öÁËÊýѧ½ø»¯µÄÈçÏÂ10¸ö¹æÂÉ[3].

¡¡¡¡¹æÂÉ(1): ÔÚÈκθø¶¨µÄʱ¼ä¶Î,ÓëÏÖÓÐÊýѧÎÄ»¯¸ß¶ÈÏà¹Ø¡¢ÒÔÔöÇ¿Âú×ã×ÔÉíÒÅ´«Ñ¹Á¦»òÖ÷ÌåÎÄ»¯»·¾³Ñ¹Á¦ÒªÇó֮ʵЧÐԵĸÅÄ»áµÃµ½½ø»¯.

¡¡¡¡¹æÂÉ(2): Ò»¸ö¸ÅÄîµÄ¿É½ÓÊÜÐԺͽÓÊ̶ܳȽ«È¡¾öÓÚÆä³É¹ûµÄ·á¸»³Ì¶È,ÌرðÊÇ,Ò»¸ö¸ÅÄî²»»áÒòΪËüµÄÆðÔ´»òÕßÖîÈ瓲»ÕæʵµÄ”ÕâÀàÐζøÉÏѧ±ê×¼¶øÓÀÔ¶±»¾Ü¾ø½ÓÊÜ.

¡¡¡¡¹æÂÉ(3): Ò»¸ö¸ÅÄîÔÚÊýѧÉϳÖÐø¾ßÓÐÖØÒªÒâÒåµÄ³Ì¶È,¼ÈÈ¡¾öÓÚËüµÄ·ûºÅ±í´ïģʽ,Ҳȡ¾öÓÚËüÓëÆäËû¸ÅÄîµÄ¹Øϵ.Èç¹ûÒ»ÖÖ·ûºÅģʽÇ÷ÏòÓÚ»ÞɬÄѶ®¡¢ÉõÖÁµ¼ÖÂÕâ¸ö¸ÅÄîÍêÈ«±»¾Ü¾ø,¼ÙÉèÕâ¸ö¸ÅÄîÓÐÓÃ,ÄÇô½«»á³öÏÖÒ»ÖÖ¸üÈÝÒ×Àí½âµÄ·ûºÅÐÎʽ.Èç¹ûÒ»×é¸ÅÄîÊÇÈç´ËµÄÏà¹Ø,ÒÔÖÁÓڿɽ«ËüÃÇÈ«²¿ÕûºÏ³ÉÒ»¸ö¸üÒ»°ãµÄ¸ÅÄî,ÄÇôÕûºÏºóµÄ¸ÅÄ»áµÃµ½½ø»¯.

¡¡¡¡¹æÂÉ(4): Èç¹ûij¸öÈ·¶¨ÎÊÌâµÄ½â¾ö½«Íƶ¯ÊýѧÀíÂ۵Ľø²½,ÄÇô¸ÃÀíÂ۵ĸÅÄî½á¹¹½«»áÒÔʹ¸ÃÎÊÌâµÃµ½×îÖÕ½â¾öµÄ·½Ê½½ø»¯,ÓпÉÄÜÊÇÔÚÈô¸ÉÑо¿Õ߱˴˶ÀÁ¢Çé¿öϽâ¾öµÄ(µ«²»Ò»¶¨»á·¢±í).(²»¿É½âµÄÖ¤Ã÷Ò²±»ÈÏΪÊÇÎÊÌâµÄ½â¾öÖ®µÀ,Õâ·½ÃæµÄÀý×ÓÈ绯ԲΪ·½¡¢ÈýµÈ·Ö½ÇÒÔ¼°ÀàËƵÄ).

¡¡¡¡¹æÂÉ(5): ´«²¥µÄ»ú»á½«Ö±½ÓÓ°ÏìиÅÄîµÄ½ø»¯ËÙ¶È.ÕâЩ»ú»á±ÈÈç¿É±»ÆÕ±é½ÓÊܵķûºÅ,³ö°æÎïÇþµÀµÄÔö¼Ó,ÒÔ¼°ÆäËûµÄ½»Á÷ÒâÒå.

¡¡¡¡¹æÂÉ(6): Ö÷ÌåÎÄ»¯µÄÐèÇó,ÌرðÊÇ°éËæ׏¤¾ßÔö¼Ó¸øÊýѧ×ÓÎÄ»¯ÌṩÑø·Öʱ,½«µ¼ÖÂиÅÄîÊֶεĽø»¯ÒÔÂú×ãÐèÇó.

¡¡¡¡¹æÂÉ(7): ½©»¯µÄÎÄ»¯»·¾³×îÖÕ»á¶óɱÐÂÊýѧ¸ÅÄîµÄ·¢Õ¹,²»ÀûµÄÕþÖηÕΧ»òÆÕ±éµÄ·´¿Æѧ·ÕΧҲ»á²úÉúÀàËƵĺó¹û.

¡¡¡¡¹æÂÉ(8): µ±Ç°¸ÅÄî½á¹¹±©Â¶µÄ²»Ò»ÖÂÐÔ»ò²»Í걸ÐÔ¿ÉÄܲúÉúµÄΣ»ú,½«´Ì¼¤Ð¸ÅÄîµÄ¼ÓËÙ½ø»¯.

¡¡¡¡¹æÂÉ(9): иÅÄîͨ³£ÒÀÀµÓÚµ±Ê±½öƾֱ¾õ¸ÐÖªµÄ¸ÅÄî,µ«ÕâЩ¸ÅÄîµÄ²»Í걸ÐÔÖÕ½«µ¼ÖÂеÄΣ»ú.ͬÑù,Ò»¸öÐü¶øδ¾öÎÊÌâµÄ½â¾öÒ²»á²úÉúеÄÎÊÌâ.

¡¡¡¡¹æÂÉ(10): Êýѧ½ø»¯ÓÀÔ¶ÊÇÒ»¸ö³ÖÐø½ø²½µÄ¹ý³Ì,ËüÖ»Êܵ½¹æÂÉ(5)ÖÁ(7)ËùÃèÊöµÄżȻʼþËùÏÞÖÆ.

¡¡¡¡µ±È»,ËûÒ²Ö¸³öÕâЩ½¨ÒéµÄ¹æÂÉËƺõÖµµÃÉîÈëÑо¿,ÒÔ±ãΪÆä±ç»¤»ò²µ³â.¶ÔÉÏÊö¹æÂÉ,»³¶ûµÂÆÀÂÛÖ¸³ö[3],Ëùν“Ö÷ÌåÎÄ»¯”ÊÇÖ¸°ÑÊýѧ×÷Ϊ×ÓÎÄ»¯µÄÎÄ»¯.Ëü²»ÊÇΨһ¿É¶¨ÒåµÄ.´ÓÀúÊ·ÉϽ²,ËüÔÚijʱºòÊÇÓɹú½ç¾ö¶¨µÄ,¾ÍÏñÖйú¹Å´úÊýѧһÑù.ÔÚÏÖ´ú,³ý·ÇÓÐÕþÖÎÁ¦Á¿½éÈë,·ñÔòÖ÷ÌåÎÄ»¯Í¨³£»á³¬Ô½¹ú½ç.ÔÚµÚ(6)Ìõ¹æÂÉÖÐ,¿¼ÂÇÃÀ¹ú×Ô¶þÕ½¿ªÊ¼ÒÔÀ´Êýѧ·¢Õ¹×´¿öÊǺÜÓÐÆô·¢ÐÔµÄ.Ö÷ÌåÎÄ»¯µÄ¾­¼ÃºÍÕþÖÎÐèÇó´Ì¼¤Á˼ÆËã»úµÄ·¢Õ¹,²¢×îÖÕÔÚÀíÂÛºÍÓ¦ÓÃÊýѧÖз­¿ªÁËոеÄÒ»Ò³.µÚ(1)Ìõ¹æÂɲ»Ö¤×ÔÃ÷,иÅÄî×ÜÊÇÒÔijÖÖ·½Ê½ÓëÏÖÓÐÊýѧ¸ÅÄîÏà¹Ø,ËüÃǵķ¢Ã÷ÊÇÓɽâ¾öÏÖÓÐÊýѧÎÄ»¯(ÒÅ´«Ñ¹Á¦)»òÖ÷ÌåÎÄ»¯(»·¾³Ñ¹Á¦)Ìá³öµÄ½ôÆÈÎÊÌâÐèÒªËùÍƶ¯µÄ.Ò»¸öÈË¿ÉÄÜÓµÓÐÁîÈËÇÕÅåµÄ´´ÔìÏÖ´ú´úÊý¸ÅÄîµÄÐÄÖǽṹ,µ«ËûÅöÇÉÊǸö¹ÅÏ£À°¹«Ãñ,ÄÇËû¿Ï¶¨ÓÀÔ¶Ò²´´Ôì²»³öÏÖ´ú´úÊý¸ÅÄî.Ò»¸öÖ§³ÖµÚ(2)Ìõ¹æÂɵĺܺÃÀý×ÓÊÇÊýѧÖÐ×îÖÕ±»ÆȽÓÊܸºÊýºÍÐéÊý.µÚ(3)Ìõ¹æÂɵÄÀýÖ¤ÊÇʵÊýλֵ±íʾϵͳµÄ½ø»¯.°Í±ÈÂ×ÃÜÂë·ûºÅ±»ÆäËû¸ü¼òµ¥µÄ·ûºÅËùÈ¡´ú,µ«ÊǰͱÈÂ×À©Õ¹µ½·ÖÊýµÄλֵϵͳÐÒ´æÏÂÀ´,ÐγÉÊý×ÖϵͳµÄÆðÔ´.ÃèÊö¹æÂÉ(4)×î×ÅÃûµÄÀý×ÓÊÇÅ·¼¸ÀïµÃƽÐй«ÀíÕâÒ»¾­µäÎÊÌâ.¸Ã½â¾ö·½°¸Í¨³£±»ÈÏΪÊǸß˹¡¢ÂÞ°ÍÇзò˹»ùºÍ±«Ò®ÔÚ19ÊÀ¼ÍÇ°Èý·Ö֮һʱÆÚ¶ÀÁ¢¹¤×÷µÄ½á¹û.»³¶ûµÂÈÏΪËƺõû±ØÒªÏêϸ²ûÊöÖйú¹Å´úÊýѧµÄµÚ(5)ºÍµÚ(7)Ìõ¹æÂÉ.Öйú¹Å´úÊýѧ¾ÍÏñËüµÄÖ÷ÌåÎÄ»¯±¾ÉíÒ»Ñù,±äµÃ½©»¯ÁË.ͬÑùµÄÀý×ÓÊÇÏ£À°ÈËÊýѧ´´ÔìÁ¦µÄϽµÓëÄǸöʱ´úÆÕ±éÎÄ»¯Ë¥ÍËͬʱ·¢Éú.¹ØÓÚµÚ(8)Ìõ¹æÂÉ¿ÉÒÔÊ×ÏÈÖ¸³öÏ£À°ÊýѧµÄΣ»ú,ÕâÖÖΣ»úÊÇÓÉÓÚ·¢ÏÖÎÞÀíÁ¿ºÍ֥ŵã£ÂÛ¶øÔì³ÉµÄ,½ÓÏÂÀ´ÊÇÏ£À°¼¸ºÎѧ·¢Õ¹µÄ´´×÷ÆÚ.¹ØÓÚÊýѧ·ÖÎö»ù´¡µÄΣ»ú×îÖÕµ¼ÖÂÁËʵÊýϵµÄ¸ÅÄî,Ò²ºÜºÃµØÃèÊöÁ˵Ú(9)Ìõ½ø»¯¹æÂÉ,ÒòΪËü½«¼¯ºÏ¸ÅÄîÒýÈëÊýѧ,¶øÕâÓÖÔÚ20ÊÀ¼Í³õÒý·¢Ò»³¡ÐµÄΣ»ú.¶ø²»¼Ó¿ØÖƵØʹÓü¯ºÏÕâ¸ö¸ÅÄî»á²úÉúì¶Ü,Òò´Ë±ØÐë¶ÔÆä½øÐзÖÎö.Ö»ÓжÔÊýѧʷ½øÐиüÈ«ÃæµÄÂÛÊö,²ÅÄܳä·ÖÖ§³ÖµÚ(10)Ìõ¹æÂɵÄÖ÷ÕÅ.ºÁÎÞÒÉÎÊ,´´ÔìÐÔµÄÖ°ÒµÊýѧ¼ÒÃÇͨ³£»á¸ù¾Ý×Ô¼ºµÄ¾­ÑéÀ´´ï³É¹²Ê¶,ÊÂʵÉÏ,ÔÚʵÖÊÉÏÊǹæÂÉ(8)ºÍ(9)µÄ±ØÈ»½á¹û.

¡¡¡¡3¡¢ Ïà¹ØµÄÀúÊ·ÆÀÊö

¡¡¡¡»³¶ûµÂ¡¶Êýѧ¸ÅÄîµÄ½ø»¯¡·Ò»Êé³ö°æºó,µÃµ½ÁËÖÚ¶àÊýѧ¼Ò¡¢Êýѧʷ¼Ò¡¢¿Æѧʷ¼Ò¡¢ÈËÀàѧ¼ÒºÍÊýѧ½ÌÓý¼ÒµÄ»ý¼«ÆÀÂÛ,ÆäÖÐÔÞÉͺÍÅúÆÀµÄÒâ¼û¶¼ÓÐ.ÀýÈç,Ôø×ö¹ýÃÀ¹úÊýѧ½ÌʦЭ»áÖ÷ϯµÄÃ÷ÄáËÕ´ï´óѧÊýѧ½ÌÊÚÔ¼º²Ñ·,¸ø»³¶ûµÂÕâ±¾ÊéдÁËÊéÆÀ,Ïêϸ½éÉÜÁËÈ«ÊéµÄÖ÷ÒªÄÚÈÝ,ËûÈÏΪÕâÊÇÒ»±¾ÖµµÃѧÕßÓÃÀ´ÒýÓúÍ×÷Ϊ²Î¿¼ÎÄÏ׵IJο¼Êé,Õâ±¾Êé×î³É¹¦Ö®´¦ÊÇ°ÑÊýѧ×÷Ϊһ¸ö¶¯Ì¬µÄ֪ʶÁìÓò,ÒÔÓ¦¶ÔÉç»á·¢Õ¹µÄÐèÒª.¸ÃÊé×îÖØÒªµÄÓÃ;ÊÇ×÷ΪÅàÑøÖÐСѧÊýѧ½ÌʦµÄ“ÊýѧÎÄ»¯¿Î³Ì”½Ì¿ÆÊéʹÓÃ[9].

¡¡¡¡Ó¢¹ú¸ñÁÖÍþÖλʼҺ£¾üѧԺÊýѧ½ÌÊÚ²¼Â޵±¾ÌØÖ¸³ö»³¶ûµÂÊéµÄÒ»´óÓŵãÊÇ,ûÓÐΪÈËÃÇÌṩһϵÁÐÔ²»¬¡¢·ôdzµÄ´ð°¸.Ïà·´,Ëü³ÂÊöÊÂʵ¡¢Ìá³öÎÊÌâ,²¢Ìá³öÁË¿ÉÄܵĽâÊÍ.×÷ÕßÖ÷ÒªÑо¿ÁËÊýºÍ¼¸ºÎ¸ÅÄîµÄ½ø»¯,ËûµÄ·½·¨¼ÈÊÇÊýѧ¼ÒµÄ,Ò²ÊÇÈËÀàѧ¼ÒµÄ.¸ÃÊéÊǶÔÎÄÃ÷Ê·µÄÖØÒª¹±Ï×,¼«´ó¼ÓÇ¿ÁËÁªºÏ¹ú½Ì¿ÆÎÄ×éÖ¯ÔÚ“ÈËÀàÊ·”°Ù¿ÆÈ«ÊéÖжԓÊýѧ”´ÊÌõµÄ²»¿¶¿®´¦Àí.ÕýÈçÃÀ¹úÓԱ°¢Ä·Ë¹ÌØÀÊÔÚÇ°ÍùÔÂÇò·ÉÏдµÄÆÀÂÛ:ÎÞÂÛÕâÊÇÎÒÃÇÎÄÃ÷µÄʤÀû»¹ÊÇÔÖÄÑ,Ëü¿Ï¶¨È¡¾öÓÚÊýѧ¼¼ÄÜ,¶Ôµ±´úÊÀ½çµÄÈκÎÈÏÕæÑо¿¶¼²»ÄܺöÊÓÊýѧÔÚÆäÖеÄÖØÒªÒâÒå,¾¡¹ÜÕâÖÖÖØÒªÐÔ¾­³£±»µÍ¹À.»³¶ûµÂ½ÌÊÚÇ«ÐéµØ°ÑËûµÄÊé³ÆΪ“Ò»¸ö³õ²½µÄÑо¿”,ÊÂʵҲÊÇÈç´Ë.µ«ÈËÃÇ»¹ÊÇÏ£ÍûÕâÊdz¯×ŸüÉîÈë¡¢¸üÈ«ÃæÑо¿ËùÂõ³öµÄµÚÒ»²½,²¢ÍØÕ¹ÌÖÂÛ20ÊÀ¼ÍÏ°ëÒ¶ÊýѧÔÚÎÄ»¯ÖеĵØλ[10].

¡¡¡¡ÃÀ¹ú×ÅÃûÊýѧʷ¼Ò²©Ò®Ö±½Ó¸øÕâ±¾Ê鶨ÒåΪ“ÊýѧÈËÀàѧ”,²©Ò®Ö¸³ö,ÐÄÀíѧÑо¿±íÃ÷,ÊýѧÄÜÁ¦ÊǷdz£Î¢ÃîºÍÄÑÒÔ×½ÃþµÄ,ÕâÔÚ°¢´ïÂêÃû×Å“ÊýѧÁìÓòµÄ·¢Ã÷ÐÄÀíѧ”ÒѾ­Ö¸³ö.»³¶ûµÂµÄ¹¤×÷ÊǶ԰¢´ïÂêÕâ·½ÃæÎÊÌâµÄÒ»¸ö²¹³ä,²»·Á³Æ֮Ϊ“ÊýѧÁìÓòµÄ·¢Ã÷ÈËÀàѧ”,ÒòΪ¸ÃÊéÖ÷Òª¹Ø×¢ÁË“Êýѧ×÷ΪÎÄ»¯ÓлúÌåµÄ½ø»¯¹ý³Ì”,¾¡¹Ü×÷ÕßµÄÖ÷Òª³É¾ÍÊÇÊýѧÑо¿,µ«¸ÃÊé¸ü¶àµÄ²ÉÓÃÈËÀàѧ¼Ò¹Ûµãʤ¹ý±ü³ÐÊýѧ¼ÒµÄ¹Ûµã.²©Ò®ÈÏΪ»³¶ûµÂ¾¡¹ÜÓÃÕûÕûÒ»ÕÂÀ´ÌÖÂÛʵÊý,µ«È´¼¸ºõûÓÐÉæ¼°¸ºÊýºÍÐéÊýÎÄ»¯»ù´¡ÎÊÌâµÄÌÖÂÛ.¼¸ºÎ¸ÅÄîµÄ½ø»¯Ò²±ÈÊý¸ÅÄî½ø»¯ËùÓõıÊÄ«ÉÙ,¶øÇÒËûҲûÄÜÔËÓÃ×Ô¼ºµÄÄÚ²¿(ÒÅ´«)ºÍÍⲿ(»·¾³)ѹÁ¦Ô­Ôò,ÌÖÂÛÊ®ÆßÊÀ¼ÍΪºÎÉäÓ°¼¸ºÎ»á±»Àäµ­µÄ¶Ô´ý.²©Ò®ÈÏΪ»³¶ûµÂ¹ØÓÚÊýѧ¸ÅÄîΪʲô±»´´ÔìºÍ·¢Õ¹µÄÌÖÂÛ,²¢²»ÊǶÔÕâÒ»»°ÌâµÄ×îÖÕ½â´ð,¶øÊÇÔÚÕâ¸ö·½ÏòÉϵĴú±íÐÔ³¢ÊÔ¹¤×÷.×÷ÕßÒԹ㷺ÊìÖªµÄÀúÊ·²ÄÁÏ¡¢¾«×¼µÄÊýѧËزÄ,ÒÔ¼°ÎüÒýÈ˵ķç¸ñÊéдÁËÕâ±¾×Å×÷.¾¡¹ÜÓÐЩÈ˲»»áÍêÈ«ÈÏͬËûµÄÏà¹ØÂÛµã,µ«¸ÃÊéÒԷdz£ÀÖ¹ÛµÄ̬¶È½áβ.µ±Ç°ÊýѧµÄ·¢Õ¹×´¿öµ¼ÖÂÁîÈ˼¤¶¯µÄÏÖʵÊÇ,ÒòΪÊýѧµÄÎÄ»¯±¾ÖÊ,ËüµÄ½ø»¯²»»áÖÕÖ¹[11].

¡¡¡¡ÃÀ¹ú×ÅÃûÊýѧʷ¼Ò˹ÌØÂåÒÁ¿ËÖ¸³ö,´ÓÎÄ»¯ÊӽǶÔÊýѧµÄµØλ¼°Æä·¢Õ¹,ÒÔ¼°Æä´ÓÒ»¸öÎÄ»¯ÏòÁíÒ»¸öÎÄ»¯´«²¥µÄÑо¿»¹ºÜÉÙ.»³¶ûµÂµÄÑо¿´ÓÎÄ»¯Ñ§µÄ¹Ûµã¶àÓÚ´ÓÐÄÀíѧµÄ¹Ûµã,¾¡¹ÜÈËÃÇÒÑÊì֪һЩÅÓ¼ÓÀ³ºÍ°¢´ïÂêµÈÏÖ´úÊýѧ¼ÒµÄÌض¨¹Ûµã.¸ÃÊ齫»áÒýÆðÀúʷѧ¼Ò¡¢ÎÄ»¯ÈËÀàѧ¼ÒµÄÐËȤ,ÒÔ¼°ÖÐѧÊýѧÀÏʦµÄÐËȤ.˹ÌØÂåÒÁ¿Ë½«×Ô¼ºµÄ¹ÛµãÓ뻳¶ûµÂ×öÁ˱ȽÏ,»³¶ûµÂ³Æ֮Ϊ»·¾³Ñ¹Á¦µÄÒòËØ,¾ÍÊÇËû×Ô¼ºÔø¾­Ç¿µ÷µÄÉç»á¾­¼ÃºÍÕþÖÎÒòËØ,ÒÔ¼°Ëû×Ô¼ºÒ²ÔøÀàËƵÄÌÖÂÛ¹ý“¸ÅÀ¨”ºÍ“³éÏó”ÒòËØ.ËûͬÒ⻳¶ûµÂµÄ¹Ûµã: ¾¡¹Ü¸ö±ðÊýѧ¼ÒµÄ¹ÛµãÈÏΪ,ÎÄ»¯ÖÐÊýѧµÄ¹¦ÄÜÊÇÒ»ÃÅ»ù´¡¿Æѧ,ÕýÈçÈËÃÇËù¼ûµ½µÄÊýѧ¶ÔÆäËû¿ÆѧµÄÖ§³Å,µ«ÊýѧµÄÈËÎÄ·½Ãæ¿ÉÄܸüÖØÒª.ÎÞÂÛÈçºÎ,ÕâÊÇÒ»±¾·Ç³£ÓÐÓÃҲдµÃºÜºÃµÄÊé,ÍƼö¸øÄÇЩϲ»¶Êýѧʷ²¢ÏëÖªµÀÊýѧ¼ÒΪʲôÑо¿ÊýѧµÄÈËÔĶÁ[12].

¡¡¡¡ÃÀ¹úÎÄ»¯ÈËÀàѧ¼Ò¡¢ÎÄ»¯½ø»¯Â۵Ĵú±íÐÔÈËÎïÈûά˹ÈÏΪ,»³¶ûµÂµÄÊéʵÏÖÁ˱»ÓþΪÏÖ´úÈËÀàѧ֮¸¸µÄÓ¢¹úÈËÀàѧ¼Ò°®µÂ»ª·Ì©ÀÕ¹ØÓÚÈËÀàѧ¾ßÓпçѧ¿ÆʵÓÃÐÔµÄÓÐÒæ³¢ÊÔ,ÔÚËûµÄÊýѧ¼Ò´ó»áÑݽ²ºÍºóÐø¼¸ÆªÎÄÕµĻù´¡ÉÏÐγÉÁË“ÊýѧÈËÀàѧ”µÄÑо¿.»³¶ûµÂÒÔËû×Ô¼º¶ÀÌصķ½Ê½ÌÖÂÛÁËÊýѧµÄ½ø»¯,רҵ»¯Ê±´úµÄʵ¼ùÓ¦Óü°ÊýѧÓëÆäËûѧ¿ÆµÄ¹Øϵ,ÖØÒªµÄÊÇ»³¶ûµÂÊÇ»ùÓÚÒ»°ãÎÄ»¯½ø»¯µÄÊӽdzö·¢µÄ.Õâ±¾ÊéÓ¦¸ÃÒýÆð¸ü¹ã·ºµÄ¶ÁÕßÐËȤ.һλְҵÊýѧ¼ÒÀûÓÃÆä¶ÔÈËÀàѧµÄÐËȤ,ΪÊýѧÀíÂÛдÁËÒ»¸ö¶Àµ½µÄ½éÉÜ,Ëü½«ÎüÒýÈκÎÒ»¸öÊܹýÊýѧѵÁ·µÄ¶ÁÕß.Èûά˹ָ³ö,×Ô¼º×÷Ϊһ¸öÖ°ÒµµÄÈËÀàѧ¼Ò,ÔÚÊýѧ·½Ãæ²¢²»×¨Òµ,µ«Õâ±¾ÊéÎüÒýÁËËûµÄ×¢ÒâÁ¦²¢½Ì»áËûºÜ¶à,´øÀ´ÒâÍâµÄ¾ªÏ².Õâ±¾Êé¿ÉÒÔÍƼö¸øÈËÀàѧ¼Ò(ÎÞÂÛËûÊýѧˮƽÈçºÎ),»³¶ûµÂµÄ¹¤×÷Ç¡ÈçÌ©ÀÕ¶ÔÈËÀàѧÆÀÊöµÄÄÇÑù[13].

¡¡¡¡ÆÕÁÖ˹¶Ù´óѧÀúʷϵ¿ÆѧʷÑо¿·½ÏòµÄÂí°ÂÄá½ÌÊÚÈÏΪ,Õâ±¾Êé¼ÈÄÜʹÊýѧʷ¼Ò¸Ðµ½Õñ·ÜÓÖÁîÈ˾ÚÉ¥.ÁîÈËÕñ·ÜµÄÊÇ»³¶ûµÂ´ÓÉî¿Ì¶´²ìµÄ³Ðŵ¿ªÊ¼,ËûÖ¸³öÊýѧÊÇÈËÀà×Ô¼ºµÄ´´Ôì,ÕâÖÖÊýѧÀàÐͺÍÈËÀàÈκÎÆäËûÊÊÓ¦»úÖÆÒ»Ñù,¶¼Êǵ±Ê±ÎÄ»¯ÐèÇóµÄº¯Êý.µ«ºóÀ´»³¶ûµÂȴûÄÜʵÏÖÕâÒ»³Ðŵ,ÏÔÈ»ÊÇÒòΪ×÷ÕßûÓÐÈÏʶµ½×Ô¼ºÂÛµãµÄÉî¿ÌÐÔ.»³¶ûµÂËäÈ»³¢ÊÔÁË“Êý”¸ÅÄîµÄÎÄ»¯Ê·Ñо¿,ÏêϸµÄ¶Ô¹ÅÏ£À°¼¸ºÎÔÚËÜÔìÎ÷·½Êýѧ˼άϰ¹ßÖеÄ×÷ÓýøÐÐÁËÉóÊÓ,µ«Î´ÄÜÈÃÅúÅеĶÁÕßÂúÒâ,²¿·ÖÔ­ÒòÊÇÓÐЩÊýѧÀúÊ·µÄÄÚÈݲ»¶Ï³åÍ».»³¶ûµÂºöÊÓÁËËû×Å×÷µÄÖ÷Ö¼,¼´Èç¹ûÊýѧÄÜ·´Éä³öÎÄ»¯,ÄÇôÀúʷѧ¼ÒÓ¦¸ÃÔÚÆäÎÄ»¯±³¾°Ï¶ԴýÒÔÍùµÄÊýѧ.¶ø×÷ÕßƵ·±µØºöÊÓÀúÊ··ÖÎö,×ÜÊdzÁÄçÓÚ“Èç¹û”µÄ»ÃÏëÀï,Èç¹û°Í±ÈÂ×ÈËÕâô×ö,Èç¹ûÏ£À°ÈËÕâô×ö,µÈµÈ.ÕâÖÖÍƲâ½öÄÜÌṩ΢СµÄÀúÊ·¶´¼û,ÇÒÖÆÔ¼ÁË×÷Õ߶Ô×Ô¼º¹ÛµãµÄÕýÈ·»Ø´ð.²»¶ÏµØÖظ´¶Ô“ʵÎÞÇķ´¶Ô,³ÂÊö¿µÍеÄÊýÀíÂÛ,ºÃÏñ½ñÌìËùÓеÄÊýѧ¼Ò¶¼Í¬ÒâËƵÄ.Õâ±¾ÊéΪÊýѧʷָ³öÁËÒ»ÌõºÜºÃµÄµÀ·,µ«Ò²½ö½öÊÇÖ¸³öµÀ·¶øÒÑ[14].

¡¡¡¡ÃÀ¹úʥĸ´óѧ¿ÆѧʷÓëÕÜѧ½ÌÊÚ¿ËÂåÒ²Ôø̽ÌÖ¹ýÊýѧÀúÊ·ÑݱäµÄ“Ê®Ìõ¹æÂÉ”[15],1974Äê8ÔÂ7ÈÕÖÁ9ÈÕ,ÃÀ¹úÒÕÊõÓë¿ÆѧѧԺÔÚÂíÈøÖîÈûÖݾٰì“ÏÖ´úÊýѧµÄ½ø»¯”¹¤×÷·»,¿ËÂåÒ²Ñݽ²ÁËÏà¹ØµÄÄÚÈÝ[16].ÔÚÕâ´Î»áÉÏ,ÃÀ¹úÅ®Êýѧ¼Ò¿ÆÅå¶ûÂüÒ²¸ø³öÁËÀàËƵēÊýѧµÄÁù¸öÀúÊ·½ø³Ì”[17].¿ËÂåºóÀ´ÔøÕë¶Ô»³¶ûµÂÒ»ÊéÌá³öµÄÊýѧ½ø»¯¹æÂÉÈô¸ÉÌõ½øÐÐÁËÖÊÒÉ,°üÀ¨½ø»¯“¶¯Á¦”Ò»´ÊµÄ±¾Öʺ¬Òå,ÒÔ¼°¸÷Ìõ½ø»¯¹æÂÉÖдÊÓïµÄʹÓõÈÎÊÌâ.µ±È»,ËûÒ²ÌáÐѶÁÕß,²»ÒªÒòΪÉÏÊöÅúÅÐÐÔÆÀÂ۾ʹíÎóµÄÈÏΪ»³¶ûµÂµÄÊé²»ÖµµÃÑÏËà¶Ô´ý,Õâ±¾Êé²»½öÊǽÌʦµÄ³öÉ«Êýѧʷ¹¤¾ßÊé,¶øÇÒÊÇËùÓд´ÔìÐÔµÄÊýѧʷ¼Ò±ØÐëÃæ¶Ô²¢½«´ÓÖлñÒæµÄÒ»±¾Êé[18].»³¶ûµÂ¶Ô´Ë¸ø³öÁË»ý¼«µÄ»ØÓ¦,Ç¿µ÷ÁËËûËùÔËÓõē¶¯Á¦”Ò»´ÊÊÇ“ÎÄ»¯½ø»¯ÂÛ”ÖеĸÅÄî,¶¼ÊÇÈËÀàѧ¼ÒʹÓõĴÊÓï.»³¶ûµÂÖðÌõ¶ÔÆäÖÊÒɽøÐÐÁ˱粵,²¢ÈÏΪÔÚһЩ¹æÂÉÉ϶þÈ˵ÄÒâ˼´óÖÂÏàͬ,µ«¶Ô¿ËÂå³ÆËûΪһ¸ö“ʵÓÃÖ÷ÒåÕß”,»³¶ûµÂÈÏΪ×Ô¼ºÍ¬Ê±Ò²ÊǸö“¸ÅÄîÖ÷ÒåÕß”,»òÕ߸üÔ¸Ò⽫×Ô¼º¶¨ÎªÒ»¸ö“ÎÄ»¯½ø»¯Ö÷ÒåÕß”[19].

¡¡¡¡²Î¿¼ÎÄÏ×

¡¡¡¡[1] Wilder R L.The cultural basis of mathematics [C]// Graves L M,Smith P A,Hille E,et al.Proceedings of the International Congress of Mathematicians,Cambridge,Massachusetts,U S A.August 30-September 6,1950.Vol 1,Providence,American Mathematical Society,1952:258-271.
¡¡¡¡[2] Wilder R L.The origin and growth of mathematical concepts [J].Bulletin of the American Mathematical Society,1953(59):423-448.
¡¡¡¡[3] Wilder R L.Evolution of mathematical concepts:An elementary study [M].New York:Wiley & Sons,Inc,1968:2-100.
¡¡¡¡[4] Wilder R L.The role of intuition [J].Science.New series,1967(156):605-610.
¡¡¡¡[5] Wilder R L.History in the mathematics curriculum:Its status,quality and function [J].The American Mathematical Monthly,1972(79):479-495.
¡¡¡¡[6] Wilder R L.Note on the evolution of pure mathematics (unpublished) [M]// Raymond Louis Wilder Papers,1914-1982,Archives of American Mathematics,Dolph Briscoe Center for American History,University of Texas at Austin.Box 86-36/15.
¡¡¡¡[7] Wilder R L.Evolution of the topological concept of “connected” [J].The American Mathematical Monthly,1978,85(9):720-726.
¡¡¡¡[8] Wilder R L.Mathematics as a Cultural System [M].New York:Peragmon Press,1981:85.
¡¡¡¡[9] Johnson D A.Book review of evolution of mathematical concepts:An elementary study [J].The Arithmetic Teacher,1969,16(6):500-501.
¡¡¡¡[10] Broadbent T A A.Book review of evolution of mathematical concepts:An elementary study [J].The Mathematical Gazette,1970,54(387):70.
¡¡¡¡[11] Boyer C B.Book review of evolution of mathematical concepts:An elementary study [J].Science,1969,163(3869):799.
¡¡¡¡[12] Struik D J.Book review of evolution of mathematical concepts:An elementary study [J].The American Mathematical Monthly,1969,76(4):428-429.
¡¡¡¡[13] Service E R.Book review of evolution of mathematical concepts:An elementary study [J].American Anthropologist,1970,72(6):1468-1469.
¡¡¡¡[14] Mahoney M S.Book review of evolution of mathematical concepts:An elementary study [J].American Scientist,1969,57(4):348A.
¡¡¡¡[15] Crowe M J.Ten “Laws” concerning patterns of change in the history of mathematics [J].Historia Mathematica,1975(2):161-166.
¡¡¡¡[16] Crowe M J.Ten “Laws” concerning conceptual change in mathematics [J].Historia Mathematica,1975(2):469-470.
¡¡¡¡[17] Koppelman E.Progress in mathematics [J].Historia Mathematica,1975(2):457-463.
¡¡¡¡[18] Crowe M J.Book review of evolution of mathematical concepts:An elementary study [J].Historia Mathematica,1978(5):99-105.
¡¡¡¡[19] Wilder L R.Some comments on M J Crowe's review of evolution of evolution of mathematical concepts [J].Historia Mathematica,1979(6):57-62.

×÷Õßµ¥Î»£º¼ªÁÖʦ·¶´óѧÊýѧ½ÌÓýÓëÊýѧʷÑо¿ÖÐÐÄ
Ô­Îijö´¦£ºÁõÅô·É. »³¶ûµÂµÄÊýѧ½ø»¯ÂÛ˼Ïë¼°ÆÀÊö[J]. ÄÚÃɹÅʦ·¶´óѧѧ±¨(×ÔÈ»¿ÆѧººÎÄ°æ). 2019(06)
Ïà¹Ø±êÇ©£º
  • ±¨¾¯Æ½Ì¨
  • ÍøÂç¼à²ì
  • ±¸°¸ÐÅÏ¢
  • ¾Ù±¨ÖÐÐÄ
  • ´«²¥ÎÄÃ÷
  • ³ÏÐÅÍøÕ¾