2 葡萄抗旱相关的调节基因
调节基因主要对信号传导和基因表达的过程进行调节。主要包括传递信号和调控基因表达的转录因子基因、感应和转导胁迫信号的蛋白激酶基因、在信号传导中起重要作用的蛋白酶基因。
2.1 葡萄抗旱相关转录因子
转录因子是转录起始过程中 RNA 聚合酶所需的辅助因子。在无转录因子时,真核生物的基因不表达,RNA 聚合酶自身也无法启动基因的转录,只有当转录因子结合在特定的 DNA 序列上后,相关基因才能表达。植物体内干旱胁迫信号经过一系列信号传导,最终通过激活特定的转录因子与其相应的顺式作用元件相结合,在转录水平上调控一系列基因的表达,所以转化调节基因可以有效地提高植物的耐旱性。与抗旱相关的转录因子有 MYC/MYB、AP2/ERF 和 MAPK 等。
2.1.1 MYB/MYC 转录因子
MYB/MYC 是植物中最大一类转录因子家族之一,参与次生代谢、细胞形态发生、生物和非生物胁迫应答等过程。J.T. macus[24]等发现葡萄第一个 bHLH 基因 MYCA1.MYCA1 在葡萄幼苗受到非生物胁迫时也能做出反应。
2.1.2 AP2/ERF 类转录因子
AP2/ERF 类转录因子参与植物对高盐、干旱等环境胁迫的响应,ERF 类转录因子(Ethylene-Responsive element binding Factor) 是一类能结合乙烯应答元件的蛋白,而干旱、低温、盐碱等逆境胁迫都能诱导 ERF 亚家族基因的产生,提高植物的相关抗性[25].ERF 转录因子调控胁迫相关功能基因的表达,在植物应对生物及非生物胁迫反应、提高植物的抗逆性中均起着重要的作用。王文艳等[26]以’藤稔‘葡萄的叶片为试材,克隆了水杨酸(SA)和茉莉酸(JA)信号转导途径中的重要基因 NPR1、PR1、COI1 和 LOX2,利用定量和半定量 PCR 法研究其在 SA 与 JA 处理后的表达情况。干旱、低温、盐碱等逆境胁迫的诱导下这些基因的过量表达表明了 ERF 亚家族基因与提高植物的抗性有关。
2.1.3 MBF1 转录因子
多蛋白桥梁因子 MBF1(Multiprotein bridgingfactor 1)在真核生物中是一个高度保守的转录辅激活因子,它主要是通过连接特异转录因子和TATA-box 结合蛋白(TBP)来促进靶基因的转录。已有研究表明,植物 MBF1 参与植物的生长发育和多种胁迫反应,超表达 MBF1 可以提高植物对多种胁迫的抵抗力[27-28].Yan[29]等首次从葡萄中分离干旱胁迫响应基因 VvMBF1,并通过在模式植物拟南芥中超表达 VvMBF1 基因研究其抗旱能力,结果表明:VvMBF1 转基因株系叶片气孔比野生型植株对 ABA 敏感;VvMBF1 转基因株系中依赖于 ABA 途径的抗旱基因 AtRD22 和 AtRD29B的表达量显着高于野生对照。
2.2 感应和转导胁迫信号的蛋白激酶基因
促分裂原活化蛋白激酶(MAPK)基因是感应和转导胁迫信号相关的蛋白激酶基因,MAPK 家族成员是细胞信号转导中极为重要的一类蛋白激酶,它参与多种信号传递过程,通过对转录因子的磷酸化,调控多种基因的表达;MAPK 级联信号传递途径在介导生长因子、激素反应、细胞增殖和分化、胞外环境胁迫信号和调节胞内胁迫反应中起重要作用。Samia Daldoul 等[30]以葡萄为材料,以非生物胁迫诱导 VvMAPK 激酶基因的表达,克隆并获得其 cDNA 序列,该发现为今后研究葡萄的 MAPK 途径提供了基础。
3 问题和展望
近年来,随着分子遗传学、转录组学、蛋白质组学和基因表达调控的研究,葡萄抗旱分子机制的不断深入和转基因技术的日趋完善,利用现有的野生抗旱资源与现代生物技术相结合,在分子水平上培育高效抗旱葡萄新品种是今后葡萄育种的发展趋势。葡萄对干旱胁迫的响应受多基因调控,很难从单个或几个基因的作用解释葡萄抗旱的分子机理,应该全面系统的研究多基因的协同作用。所以,要大幅度提高葡萄的抗旱性,培育优良抗性新品种只能在充分了解葡萄干旱胁迫下的生理生化反应及分子机制的基础上,采用多功能基因、主效基因和调节基因结合转化的策略,才有可能在整体水平上提高葡萄的抗旱能力。国内研究主要集中在对已有葡萄品种和砧木抗旱性的比较与鉴定上,缺乏对葡萄抗旱性的深入研究和利用,尤其是对喀斯特地貌等特殊地形地貌条件下的抗旱野生葡萄品种的抗旱分子机制研究较少。因此,结合蛋白质组学、功能基因组学、蛋白质组学及转录组学的技术与方法,例如突变体库的筛选、微阵列分析、定量蛋白质组学分析,大规模鉴定葡萄的抗旱基因,从而全面揭示葡萄抗旱分子机制、筛选抗旱砧木,综合改良培育抗旱性较强的葡萄新品种。
参 考 文 献
[1]Liu C C,Liu Y G,Guo K,Fan D Y,et al. Effect ofdrought on pigments,osmotic adjustment and antioxi-dant enzymes in six woody plant species in karsthabitats of southwestern China [J].Environ. Exp. Bot,2011,71:174-183.
[2]黄志,邹志荣,黄焕焕,等。甜瓜抗旱性相关基因MeP5CS的克隆、序列分析及表达[J]. 园艺学报。2010,37(8):1279-1286.
[3]Liu J H,Nakajima I,Morriguchi T . Effects of saltand osmotic stresses on free polyamine content andexpression of polyamine biosynthetic genes in Vitisvinifera[J].Biologia Plantarum,2011,55(2):340-344
[4]Sengupta S,Majumder AL. Physiological and genomicbasis of mechanical-functional trade-off in plant vas-culature [J].Plant Sci.,2014,5(224):1-18.
[5]Maurel C,Verdoucq L,Luu D T,et al. Plant aquapor-ins:Membrane channels with multiple integrated func-tions[J]. Annual Review of Plant Biology,2008,59:595-624.
[6]Tomoaki H,Toshiyuki K,Genki S,et al. Mechanisms ofwater transport mediated by PIP aquaporins and theirregulation via phos phory lation eventsunder salinitystress in barley root[sJ]. Plant Cell Physiology,2011,52(4):663-675.
[7]Ricardo A,Rosa P,Juan M R. Regulation of root wa-ter uptake under abiotic stress conditions [J].Journalof Experimental Botany,2012,63(1):43-57.
[8]张燕,李娟,姚青,等。 枇杷质膜水孔蛋白基因 EjPIP1的克隆及 AM 真菌对其表达的影响 [J].中国农业科学,2014,47(7):1387-1396.
[9]颜培玲,潘学军,张文娥。野生毛葡萄水通道蛋白基因VhPIP1 的克隆及其在干旱胁迫下的表达分析[J].园艺学报,2015,42(2):221-232.
[10]Heinen R B,Ye Q,Chaumont F. Role of aquaporinsin leaf physiology[J]. Journal of Experimental Botany,2009,60(11):2971-2985.
[11]Vandeleur R K,Mayo G,Shelden M C,gilliham M,etal. The role of plasma membrane intrinsic proteinaquaporins in water transport through roots:diurnaland drought stress responses reveal different strate-gies between isohydric and anisohydric cultivars ofgrapevine[J].Plant Physiol,2009,149:445-460.
[12]Perrone I,gambino g,chitarra W,Pagliarani C,Ricco-magno N,Balestrini R,Kaldenhoff R,Uehlein N,gribaudo I. The grapevine root-specific aquaporin VvPIP2;4 N controls root hydraulic conductance and leaf gasexchange upon irrigation but not under water stress[J]. Plant Physiol,2012,160:965-977.
[13]Sakurai -Ishikawa J,Murai -Hatano M,Hayashi H,etal. Transpiration from shoots triggers diurnal changesin root aquaporin expression [J]. Plant,cell environ,2011,34:1150-1163.
[14]Flexas J,Bota J,Escalona J M,et al. Effects ofdrought on photosynthesis in gra pevines under fieldconditions:an evaluation of stoma tal and mesophylllimitation[sJ]. Funct. Plant Biol.,2002,29:461-471.
[15]Ferrio J P,Pou A,Florez-Sarasa I,et al. The Pecleteffect on leaf water enrichment correlates with leafhydraulic conductance and mesophyll conductance forCO2 [J]. Plant Cell Environ,2012,35:611-625.
[16]Galmés J,Pou A,Alsina MM,et al. Aquaporin ex-pression in response to different water stress intensi-ties and recovery in Richter-110(Vitis sp.):relation-ship with ecophysiological status [J]. Planta,2007,226:671-681.
[17]Vandeleur R K,Mayo G,Shelden M C,et al. Therole of plasma membrane intrinsic protein aquaporinsin water transport through roots:diurnal and droughtstress responses reveal different strategies betweenisohydric and anisohydric cultivars of grapevine [J].Plant Physiol,2009,149:445-460.
[18]Pou A,Medrano H,Flexas J,et al. A putative rolefor TIP and PIP aquaporins in dynamics of leaf hy-draulic and stomatal conductances in grapevine un-der water stress and re-watering [J]. Plant,Cell andEnvironment,2013,36:828-843.
[19]Chitarra W,Vitali M,Pagliarani C,et al. Gene ex-pression in vessel associated cells upon xylem em-bolism repair in Vitis vinifera L. petioles [J]. Planta2014,239:887-899.
[20]Hanana M,Deluc L,Fouquet R. Identification andcharacterization of “rd22” dehydration responsivegene in grapevine (Vitis vinifera L.)[J]. ComptesRendus Biologics ,2008,331(8) :569-578.
[21]Qiu Q S,Wang Z Z. Changes of UHN1 expressionand subcelluar distributeon in A. delicisoa cells un-der osmotic stress [J]. Science in China,2002,45(1):1-1.
[22]Yang Y,He M,Zhu Z,et al. Identification of thedehydrin gene family from grapevine species andanalysis of their responsiveness to various forms ofabiotic and biotic stress [J]. BMC Plant Biology,2012,12:140.
[23]吴康,杨亚洲,张朝红,等。无核白葡萄脱水素等位基因的克隆和序列分析[J]. 果树学报,2012,29(2):177-183.
[24]J. T. Matus,M. J. Poupin,P. Canon. Isolation of andbHLH genes related to flavonoid synthesisingrapevine (Vitis vinifera L.)[J]. Plant Mol Biol,2010,72:607-620.
[25]Singh K,Foley R C,Onate-Sanchez L. Transcriptionfactors in plant defense and stress responses[J].Curr Opin Plant Biol,2000,5(5):430-436.
[26]王文艳,岳林许,张演义,等贵。葡萄 SA 和 JA 信号转导重要基因克隆及其对外源信号应答?分析[J].园艺学报,2012,39(5):817-827.
[27]Arce DP,Tonón C,Zanetti ME,et al. The potatotranscriptional co -activator StMBF1 is up -regulatedin response to oxidative stress and interacts with theTATA -box binding protein. J Biochem Mol Biol,2006,39:355-360.
[28]Mauro MF,Iglesias MJ,Arce DP,et al.MBF1s regu-late ABA -dependent germination of Arabidopsisseeds.Plant SignalBehav,2012,(7):188-192.
[29]Yan Qin,Hou Hongmin,Singer Stacy D,et al. Thegrape VvMBF1 gene improves drought stress tolerancein transgenic Arabidopsis thaliana[J]. Plant Cell,Tis-sue & Organ Culture,2014,(5)。
[30]Samia D,Michael H,Ahmed Mliki. Osmotic StressInduces the Expression of VvMAP Kinase Gene inGrapevine (Vitis vinifera L.)[J]. Journal of Botany,2012.