摘要:活性污泥微生物群落研究对于阐明污水生物净化机制、优化工艺条件均具有重要的科学意义。近年来在高通量测序技术助力下,活性污泥微生物群落结构、丰度研究工作获得了众多很有意义的研究结果。文章综述了不同污水特征、工艺条件下活性污泥微生物群落结构、丰度的动态变化与污染物去除之间的相关性,讨论了各环境因素对微生物群落的影响机理,并提出通过改变微生物群落结构及丰度提高污水处理效率的应用策略,对进一步理解城市生活污水微生物降解机理和提高污水处理效率具有重要指导意义。
关键词:活性污泥; 微生物群落; 污水特征; 运行参数; 污水处理效率;
Abstract:The research on activated sludge microbial community has an important scientific significance for demonstrating biological purification mechanism and optimizing process. Recently, many studies on activated sludge microbial community structure and abundance attained much useful results with the aid of high throughput sequencing. In this paper, the relationship between activated sludge microbial community structure, abundance and process performance are reviewed underling different sewage characteristics, process operating parameters, and the mechanisms of environmental factors to change microbial community are discussed, and the suggestions for regulating microbial community to improve efficiency of sewage treatment are proposed, which is helpful to understand municipal sewage microorganism degradation mechanism and raise efficiency of sewage treatment.
Keyword:activated sludge; microbial community; sewage characteristics; operating parameters; efficiency of sewage treatment;
目录
1污水特征与活性污泥微生物群落结构……………………………………………………………………1
1.1污水组分……………………………………………………………………2
1.2污水温度……………………………………………………………………2
1.3污泳水p H……………………………………………………………………2
2工艺及运行参数与活性污泥微生物群落……………………………………………………………………3
2.1污水处理工艺……………………………………………………………………4
2.2溶解氧浓度……………………………………………………………………4
2.3水力停留时间(HRT)和污泥停留时间(SRT)……………………………………………………………………4
3活性污泥微生物群落优化策略……………………………………………………………………5
3.1优化运行参数……………………………………………………………………6
3.2生物强化技术……………………………………………………………………6
3.3工艺改良……………………………………………………………………6
4结论……………………………………………………………………7
文内图表……………………………………………………………………8
表1不同污水温度活性污泥微生物群落结构比较……………………………………………………………………7
参考文献……………………………………………………………………9
传统活性污泥工艺,如厌氧-缺氧-好氧工艺(A2/O)、厌氧-好氧工艺(A/O)、序批式活性污泥法(SBR)、氧化沟(OD)工艺等,是目前我国城市生活污水处理系统中应用最广泛的工艺技术[1].此类工艺稳定性、处理效率与活性污泥(activated sludge,AS)微生物群落结构、多样性及丰度密切相关[2,3,4].近年来,很多研究者借助高通量测序技术及生物信息学手段研究了不同环境因子及工艺参数下活性污泥微生物群落结构、多样性和丰度的动态变化,全面揭示了活性污泥微生态系统与污水处理效率之间的相关性[5,6,7,8].例如:不同进水水质中氨氧化细菌(ammonia oxidizing bacteria,AOB)的多样性差异显著;OD工艺中拟杆菌门(Bacteroidetes)为优势群落,膜生物反应器(MBR)中变形菌门(Proteobacteria)是优势群落;污泥停留时间(sludge retention time,SRT)与AOB丰度密切相关;溶解氧(DO)水平主要影响微生物群落多样性及氨氧化活性,从而影响污水处理效率[9,10,11,12];微生物多样性及丰度与海拔高度呈反比,与污水温度呈正比等[13].总之,在不同污水水质、污水温度、工艺条件下形成了不同的污泥微生态系统。阐明污泥微生态系统中优势微生物群落结构、多样性及丰度,对理解污染物去除的微生物机制、提高工艺处理效率有重要意义。本文综述了特定活性污泥微生态系统及优势群落结构,讨论了污水特征和工艺参数与微生物群落结构、多样性及其丰度的相互关系,提出基于运行参数的微生物群落结构优化策略。
1 污水特征与活性污泥微生物群落结构
1.1 污水组分
活性污泥微生物群落结构与污水污染物组分及浓度密切相关。在有机物浓度较高(COD=20~120 g/(L·d))的污水中产氢产甲烷菌被选择性富集成为优势菌群,例如啤酒废水处理系统中酪丁酸梭菌(Clostridium tyrobutyricum)、弗氏柠檬酸杆菌(Citrobacter freundii),产气肠杆菌(Enterobacter aerogenes)、甲烷鬃菌属(Methanosaeta)、甲烷杆菌属(Methanobacterium)和甲烷鬃菌属(Methanosaeta)是常见的优势菌群[14];说明有机物浓度较高的废水更有利于产氢产甲烷等厌氧菌的增殖、富集。主要原因可能是由于微生物种群对不同类型污染物(底物)的亲和力、代谢活性和抵抗力不同,从而选择富集了特定的优势种属[15].例如:在氨氮浓度较高的污水中,亚硝化螺菌属(Nitrosomonas)为优势菌群;硝化细菌(Nitrobacter)中的硝化螺旋菌属(Nitrospira)对亚硝酸盐亲和性高,能在亚硝酸盐浓度较低的环境中快速繁殖;氨氧化古菌(AOA)对氨亲和性高,能在氨浓度低的环境中富集;AOB对氨的代谢能力强而富集在氨浓度较高的污水中[16,17,18].上述研究结果说明特定的污染物组分选择富集了特定的微生物群落,形成了特定的活性污泥微生态系统。
1.2 污水温度
不同海拔地区城镇生活污水处理厂污水温度差异明显,但活性污泥微生物群落结构中约80%的优势门和50%优势属为各活性污泥样品所共有(表1)。在一定范围内反映出活性污泥微生物群落结构具有生态一致性。另一方面,活性污泥微生物群落多样性(Shannon指数值)及丰度(Chao指数值)则随着污水温度降低而显著下降,COD、NH4+-N和TP去除率也相应降低,表明温度主要是通过影响活性污泥微生态系统群落多样性及丰度而导致污染物去除率降低,与群落结构关系不大。这与冬、夏季不同温度下微生物群落结构、多样性、丰度与污染物去除率的变化趋势相一致。因此,温度只是影响了微生物群落多样性及丰度,而不是微生物群落结构。温度影响微生物群落多样性和丰度的主要原因是不同温度下微生物的敏感性和抗性发生了变化。如聚磷菌(PAOs)较聚糖原菌(GAOs)对低温环境有更强的抗性,因而在生物强化除磷系统(EBPR)中PAOs比GAOs丰度更高,是主要优势群落[19].亚硝化螺菌属(Nitrosospira)常见于水温低于15℃污泥中,且比亚硝化单胞菌属(Nitrosomonas)对低温更有耐受性;而在温度较高(25~30℃)污水处理系统中亚硝化菌的生长速率比亚硝化螺菌的高出2倍之多[20].可见,能更好适应污水温度的微生物群落才有可能成为优势种群。
Table 1 Microbial community structure in different sewage temperature
表1 不同污水温度活性污泥微生物群落结构比较
注:a为优势细菌门按相对丰度降序排列;b为优势细菌属按相对丰度降序排列。
1.3 污水p H
微生物群落最适生长p H各不相同,p H过高或过低都会抑制微生物的生长代谢,多数微生物群落富集生长在中性和弱碱性环境中,也更有利于污染物的代谢去除。若污水p H发生变化,活性污泥微生物种群也会发生显著变化[21].中性和弱碱性的条件更有利于PAOs的生长,p H=7.4~8.4环境中PAOs生长成为SBR工艺中的优势群落,除磷效果最好;若p H下降至酸性(p H=6.4~7.0),GAOs富集为优势种群[22,23].另外,变形菌门(Proteobacterium)和绿弯菌门(Chloroflexi)也是碱性环境下常见的优势群落,如去除氨氮的红杆菌属(Rhodanobacter sp.)在p H=10.0环境中丰度最高。而且p H=8.0活性污泥总细菌多样性指数达到最大、微生物群落结构更稳定。厌氧菌群同样在碱性环境中活性更高,如大多数产甲烷菌最适p H为6.6~7.5,在p H 6.0~8.0之间均能稳定产甲烷,超出这个p H范围,甲烷菌则会被抑制[24].与微生物群落变化相一致的是COD和TN去除率在p H=8.0时达到最大,NH4+-N去除率随p H升高而增大,在p H=10.0时达到91.0%,污水处理效果最佳[25].p H变化可以引起细胞膜电荷的变化以及代谢过程中酶活性变化,中性或微碱性环境酶活性较高,促进了微生物的生长繁殖。即大多数功能微生物群落在中性和弱碱性中生长繁殖更好,污染物去除效率更高,因此,调节污水处理系统至碱性或许是提高污染物去除效率的可行途径。
2 工艺及运行参数与活性污泥微生物群落
2.1 污水处理工艺
不同污水处理工艺形成了不同的活性污泥微生物群落结构。在相同进水及运行条件下,完全搅拌釜式反应器(CSTR)中主要富集了亚硝化螺菌属(Nitrosospira spp.)(富集率42%±1.9%),而SBR中富集了亚硝化单胞菌属(Nitrosomonas)(富集率76%±4.2%)。同时,CSTR和SBR硝化效率分别为30%和89%[26],这2种工艺硝化效率的差异可能是AOB功能菌群富集率不同所致。另外,在城市生活污水处理厂运行的A2/O和A/O工艺好氧颗粒污泥中硝化单胞菌属和亚硝化螺菌属均为优势群落[27].但在EBPR污水处理系统中PAOs和GAOs的丰度更高,其中Tetrasphaera丰度最高(27%)[28].可见不同污水处理工艺形成了不同的活性污泥微生物群落结构及丰度,形成了不同的微生态系统和功能,也直接影响了工艺的脱氮除磷效率。
2.2 溶解氧浓度
溶解氧(DO)浓度对活性污泥微生物群落结构及污染物去除效率会产生显著影响。例如,低溶氧浓度(<0.2 mg/L)抑制亚硝酸盐氧化菌(NOB)、AOB生长及活性,但促进氨氧化古菌(AOA)生长[29].因此,低溶氧环境对微生物群落有一定程度的选择富集作用。溶氧对微生物的选择压力主要包括氧浓度变化和氧传递,在好氧/厌氧交替的SBR中,优势细菌是亚硝化单胞菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter),两者占到硝化菌群的79.5%;而在连续好氧SBR中,优势细菌是亚硝化螺菌属(Nitrosospira)和硝化螺旋属(Nitrospira),占到硝化菌群的78.2%[30].而且这几种AOB种群在A2/O及A/O系统也为优势细菌群落,说明AOB菌群对有氧/厌氧交替或厌氧环境有更好的耐受性。主要是因为硝化细菌的氧化速率、生长速率和衰退速率不同,且交替改变条件更加有利于硝化细菌的快速生长。另外,氧传递也同样影响着污泥微生物群落。微量的氧气分子只在污泥颗粒中扩散,硝化细菌在污泥颗粒外层会受到较大的剪切力,因此硝化细菌只在污泥颗粒内层(氧扩散层)表现出更好的活性[31].总之,DO对微生物群落结构及丰度的选择作用与氧分子浓度、传递速率及微生物对有氧/缺氧的耐受性密切相关,即不同微生物对氧的亲和力不同是改变群落结构及丰度的内因。
2.3 水力停留时间(HRT)和污泥停留时间(SRT)
水力停留时间(HRT)的变化会导致污水处理系统容积负荷发生变化,能适应此环境的微生物种群得到富集[32].HRT从72 h缩短至12 h,乙酸降解菌群甲烷八叠球菌科(Methanosarcinaceae)、甲烷微菌目(Methanomicrobiales)、甲烷鬃菌科(Methanosaetaceae)富集成为优势群落[33];当HRT超过38 h时,互营杆菌属(Syntrophobacter)是丰度较高的功能菌群,主要进行硫酸盐还原和产乙酸代谢。EBPR污水处理系统中厌氧停留时间从1.5 h增加至2.5 h,PAOs丰度下降近10%,系统反硝化除磷效率也相应降低[34].不同HRT有不同代谢功能的微生物菌群得到选择性富集。和HRT不同,污泥停留时间(SRT)主要影响了微生物的繁殖和生长,即对菌群丰度影响更大。在HRT和SRT没有分离的污水处理系统中,两者共同作用于系统微生物群落结构及丰度。
3 活性污泥微生物群落优化策略
3.1 优化运行参数
改变污水DO、温度、SRT及HRT优化活性污泥微生物群落结构及丰度是提高污染物去除效率的重要策略。控制DO浓度能有效调节微生物群落结构及丰度,而且可限制丝状菌的繁殖以减轻污泥膨胀,提高污染物去除效率[35].温度虽不能显著改变活性污泥微生物群落结构,但能有效调节群落丰度、提高微生物活性、加快微生物代谢速率,提高污染物去除效率。优化HRT可显著提高产甲烷速率,从而提高脱氮效率[36].生物膜/活性污泥生物强化除磷系统可同时满足硝化细菌和PAOs对不同SRT的需求,生长较慢的硝化细菌能附着到载体介质上,而生长快速的PAOs和其他异养微生物则能悬浮在混合液中生长,因此在该系统中调整SRT可优化脱氮除磷微生物菌群结构[37].在实际应用中,需要综合考虑工艺及操作参数对活性污泥微生物种群的选择性富集作用,通过优化群落结构与丰度提高污染物去除效率。
3.2 生物强化技术
生物强化技术是把经过初步筛选、富集的微生物纯培养物或混合培养物添加到废水处理系统中,以提高污染物降解效率。添加的微生物培养物会引起污水处理系统微生物群落结构发生改变。在运行过程中,适应能力强的菌株不断增殖,在污染物去除中发挥重要作用。在污水处理系统中添加细菌培养物,其中的优势微生物群落从拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、浮霉菌门(Planctomycetes)及变形菌门(Proteobacteria)转变为以绿菌门(Chlorobi)、厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、拟杆菌门(Bacterodietes)为优势的细菌群落,且有助于提高脱氮效率[38].Fang等[39]将苯酚降解菌添加在石油废水处理系统中并最终成为优势菌群,并显著提高了COD去除效率。然而,生物强化在实际应用中的主要问题是添加的微生物培养物可能在运行中被淘汰,或者只在短期内有效果[40].所以,进行生物强化时应筛选富集对污水及工艺参数适应良好且能快速繁殖的微生物菌群。
3.3 工艺改良
污水处理工艺发展方向是污染物的有效去除、低能耗、低成本及可持续利用。基于传统生物脱氮工艺改良的短程硝化反硝化工艺可节省40%碳源、25%氧气,减少40%沼气排放量;无碳源添加条件下,由厌氧/厌氧转变为厌氧/缺氧/有氧进行短程硝化,总氮去除率可达到80%以上[41],在含氮较高污水处理方面有独特优势。此外,低温下(13.0~17.6℃)SBR工艺处理垃圾渗滤液中添加游离氨后硝化代谢速率从19.8%提高至90%,并且高代谢率保持了近8个月之久[42],即添加氮源的SRB工艺在低温条件下的稳定性和硝化效率表现出色,所以在高寒地区可优先考虑选用改良的SBR工艺。还有改良的EBPR系统中PAOs显著富集,能有效限制丝状污泥膨胀,工艺稳定性更高,COD、TP去除率分别达到83%和98%[43,44],适合于磷浓度高的废水处理;大规模固定化膜活性污泥-强化除磷工艺在处理城镇生活污水应用中也有很好的效果,COD、NH4+-N、TN和TP的去除率分别达到84%、97%、70%和81%[45],是处理城市生活污水的理想工艺。目前我国仍有很多地区污水处理厂工艺运行不稳定、处理效率低下,很多在冬季并不能很好地发挥作用[46].随着一些新的改良工艺的发现、成熟及应用,应根据污水水质类型和温度选择适合的改良新工艺,及时对现有的传统活性污泥工艺进行改良升级以提高特定污水特征和工艺参数下污水处理效率。
4 结论
污水特征、工艺类型及运行参数均是活性污泥微生物群落动态变化的重要驱动因素。微生物群落结构、多样性及丰度的变化是微生物对不同环境适应、增殖的结果。因此,特定的污水特征和运行参数下选择富集了特定的微生物群落结构,形成了特定的活性污泥微生态系统。研究证实微生物群落的变化是污水处理效率差异的决定性因素,调控微生物群落结构、多样性及丰度是提高污水处理效率的有效策略。通过生物强化技术、工艺改良及优化运行参数控制等手段提高污染物去除率。目前,尽管从分子水平揭开了活性污泥微生物群落结构这个"黑匣子",加深了我们对微生物群落结构和污水处理工艺表现之间相互关系的理解,但是如何挖掘利用其中的功能菌群,优化微生物群落结构,提高工艺处理效率仍需进一步研究。
参考文献
[1]Jin Lingyun,Zhang Guangming,Tian Huifang.Current state of sewage treatment in China[J].Water Research,2014,66(12):85-98.
[2]Morera S,Corominas L,Poch M,et al.Water footprint assessment in wastewater treatment plants[J].Journal of Cleaner Production,2016,112:4741-4748.
[3]Wang Dongbo,Zheng Wei,Liao Dexiang,et al.Effect of initial p H control on biological phosphorus removal induced by the aerobic/extended-idle regime[J].Chemosphere,2013,90(8):2279-2287.
[4]Mielczarek A T,Nguyen H T,Nielsen J L,et al.Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants[J].Water Research,2013,47(4):1529-1544.
[5]Xia Yu,Wen Xianghua,Zhang Bing,et al.Diversity and assembly patterns of activated sludge microbial communities:a review[J].Biotechnology Advances,2018,36(4):1038-1047.
[6]Sun Yanmei,Shen Yuexiao,Liang Peng,et al.Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment[J].Water Research,2014,56(1):162-171.
[7]Kang Xiaohu,Wu Xiukun,Wang Hui,et al.Illumina sequencing reveals bacterial community shift and its role in a full-scale A2O sewage treatment process at low temperatures[J].Desalination and Water Treatment,2018,109(3):193-204.
[8]Muszynski A,Tabernacka A,Mi?ob?dzka A.Long-term dynamics of the microbial community in a full-scale wastewater treatment plant[J].International Biodeterioration&Biodegradation,2015,100:44-51.
[9]Hu Man,Wang Xiaohui,Wen Xianghua,et al.Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J].Bioresource Technology,2012,117(8):72-79.
[10]Ma Jinxing,Wang Zhiwei,Yang Yang,et al.Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 highthroughput pyrosequencing[J].Water Research,2013,47(2):859-869.
[11]Yadav T V,Khardenavis A A,Kapley A.Shifts in microbial community in response to dissolved oxygen levels in activated sludge[J].Bioresource Technology,2014,165(8):257-264.
[12]Chen Yangwu,Lan Shuhuan,Wang Longhui,et al.A review:driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J].Chemosphere,2017,174(1):173-182.
[13]Fang Dexin,Zhao Gen,Xu Xiaoyi,et al.Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J].Bioresource Technology,2018,249(2):684-693.
[14]Carrillo-Reyes J,Celis L B,Alatriste-Mondragón F,et al.Strategies to cope with methanogens in hydrogen producing UASB reactors:community dynamics[J].International Journal of Hydrogen Energy,2014,39(22):11423-11432.
[15]李南锟,杜帅,刘莉,等。葡萄糖对硫自养反硝化性能及微生物群落的影响[J].环境科学与技术,2019,42(12):8-13.Li Nankun,Du Shuai,Liu Li,et al.Effects of glucose on nitrogen removal performance and microbial community in sulfur autotrophic denitrification system[J].Environmental Science&Technology,2019,42(12):8-13.
[16]Gonzalez-Martinez A,Rodriguez-Sanchez A,Garcia-Ruiz M J,et al.Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures[J].Chemical Engineering Journal,2016,287:557-567.
[17]Terada A,Sugawara S,Yamamoto T,et al.Physiological characteristics of predominant ammonia-oxidizing bacteria enriched from bioreactors with different influent supply regimes[J].Biochemical Engineering Journal,2013,79:153-161.
[18]Rodriguez Caballero A,Hallin S,Paohlson C,et al.Ammonia oxidizing bacterial community composition and process performance in wastewater treatment plants under low temperature conditions[J].Water Science and Technology,2012,65(2):197-204.
[19]Sims A,Gajaraj S,Hu Q.Seasonal population changes of ammonia-oxidizing organisms and their relationship to water quality in a constructed wetland[J].Ecological Engineering,2012,40:100-107.
[20]于莉芳,杜倩倩,傅学焘,等。城市污水中硝化菌群落结构与性能分析[J].环境科学,2016,37(11):4366-4371.Yu Lifang,Du Qianqian,Fu Xuetao,et al.Community structure and activity analysis of the nitrifiers in raw sewage of wastewater treatment plants[J].Environmental Science,2016,37(11):4366-4371.
[21]Gao Pin,Xu Wenli,Sontag P,et al.Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai,China[J].Applied Microbiology and Biotechnology,2016,100(10):4663-4673.
[22]Tu Y J,Schuler A J.Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater[J].Environmental Science&Technology,2013,47(8):3816-3824.
[23]魏佳虹,孙宝盛,赵双红,等。p H对SBR处理效果及活性污泥微生物群落结构的影响[J].环境工程学报,2017,11(3):1953-1958.Wei Jiahong,Sun Baosheng,Zhao Shuanghong,et al.Effect of p H on operational performance and microbial community structure of activated sludge of SBR[J].Chinese Journal of Environmental Engineering,2017,11(3):1953-1958.
[24]赵双红。活性污泥微生物群落结构随p H变化的规律研究[D].天津:天津大学,2014.Zhao Shuanghong.Research on Microbial Community Constructure in Activated Sludge with the Variation of p H[D].Tianjin:Tianjin University,2014.
[25]Pereira E L,Campos C M M,Motteran F.Physicochemical study of p H,alkalinity and total acidity in a system composed of anaerobic baffled reactor (ABR) in series with upflow anaerobic sludge blanket reactor (UASB) in the treatment of pig farming wastewater[J].Acta Scientiarum Technology,2013,35(3):477-483.
[26]Fan Xiaoyan,Gao Jingfeng,Pan Kailing,et al.Functional genera,potential pathogens and predicted antibiotic resistance genes in 16 full-scale wastewater treatment plants treating different types of wastewater[J].Bioresource Technology,2018,268(11):97-106.
[27]Winkler M K H,Kleerebezem R,de Bruin L M M,et al.Microbial persity differences within aerobic granular sludge and activated sludge flocs[J].Applied Microbiology and Biotechnology,2013,97(16):7447-7458.
[28]Jaranowska P,Cydzik Kwiatkowska A,Zielinska M.Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge[J].World Journal of Microbiology and Biotechnology,2013,29(7):1145-1153.
[29]Shen Luwei,Yao Yuan,Meng Fangang.Reactor performance and microbial ecology of a nitritation membrane bioreactor[J].Journal of Membrane Science,2014,462:139-146.
[30]Dytczak M A,Londry K L,Oleszkiewicz J A.Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates[J].Water Research,2008,42(8/9):2320-2328.
[31]Niu Tianhao,Zhou Zhen,Shen Xuelian,et al.Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process[J].Water Research,2016,90(1):369-377.
[32]Zhang Ying,Wang Xin,Hu Miao,et al.Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor[J].Applied Microbiology and Biotechnology,2015,99(4):1977-1987.
[33]Bialek K,Kim J,Lee C,et al.Quantitative and qualitative analyses of methanogenic community development in highrate anaerobic bioreactors[J].Water Research,2011,45(3):1298-1308.
[34]Wang Yayi,Guo Gang,Wang Hong,et al.Long-term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems[J].Water Research,2013,47(14):5326-5337.
[35]Guo Jianhua,Peng Yongzhen,Wang Shuying,et al.Stable limited filamentous bulking through keeping the competition between floc-formers and filaments in balance[J].Bioresource Technology,2012,103(1):7-15.
[36]Baek G,Kim J,Shin S G,et al.Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria:process and microbial responses to variations in hydraulic retention time[J].Applied Microbiology and Biotechnology,2016,100(2):927-937.
[37]Onnis-Hayden A,Majed N,Schramm A,et al.Process optimization by decoupled control of key microbial populations:distribution of activity and abundance of polyphosphate-accumulating organisms and nitrifying populations in a fullscale IFAS-EBPR plant[J].Water Research,2011,45(13):3845-3854.
[38]Herrero M,Stuckey D C.Bioaugmentation and its application in wastewater treatment:a review[J].Chemosphere,2015,140:119-128.
[39]Fang Fang,Han Hongjun,Zhao Qian,et al.Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater(CGW) treatment[J].Bioresource Technology,2013,150:314-320.
[40]Liu Xiaodong,Chen Yan,Zhang Xin,et al.Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater[J].Journal of Hazardous Materials,2015,295:153-160.
[41]Sun S P,Nàcher C P I,Merkey B,et al.Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios:a review[J].Environmental Engineering Science,2010,27(2):111-126.
[42]Sun Hongwei,Peng Yongzhen,Wang Shuying,et al.Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate[J].Journal of Environmental Sciences(China),2015,30:157-163.
[43]Venkatesan A K,Hamdan A H M,Chavez V M,et al.Mass balance model for sustainable phosphorus recovery in a USwastewater treatment plant[J].Journal of Environmental Quality,2016,45(1):84-89.
[44]Yang Xiong,Peng Yongzhen,Ren Nanqi,et al.Nutrient removal performance and microbial community structure in an EBPR system under the limited filamentous bulking state[J].Bioresource Technology,2013,144:86-93.
[45]Bai Yang,Zhang Yaobin,Quan Xie,et al.Nutrient removal performance and microbial characteristics of a full-scale IF-AS-EBPR process treating municipal wastewater[J].Water Science and Technology,2016,73(6):1261-1268.
[46]Zhang Q H,Yang W N,Ngo H H,et al.Current status of urban wastewater treatment plants in China[J].Environment International,2016,92/93:11-22.