脊柱外科领域中3D打印的运用分析(2)
来源:学术堂 作者:原来是喵
发布于:2016-11-16 共10613字
2.4.2 截骨导板辅助截骨减压范围的的精确划定
脊柱后路减压、开窗及复杂脊柱畸形矫形等手术都需要截骨,传统的术前规划,术者对截骨范围的设计大多是通过术前影像学资料以及计算机软件测量设计并进行修复方案模拟来实现的,相对而言截骨范围的确定还不够精确。再加上脊柱本身解剖结构复杂,存在一定的个体差异,而脊柱畸形常常涉及到多种解剖结构的变异,如有椎弓根缺如、椎体旋转,脊柱侧弯、脊柱后凸,甚至椎体分节不全等畸形,解剖结构及解剖标志严重变异[30],而脊柱又毗邻脊髓神经等重要组织结构,运用传统的术前规划方法,术者很难获得术区直观的三维解剖信息,而造成截骨线的设计精确性较低。
而截骨线的划定,需要综合考虑脊柱矢状位及冠状位的平衡、脊髓神经的松弛程度有无序列堆积及过度牵拉、椎前血管顺应性、肌肉的牵拉程度、心肺功能的影响程度等因素。截骨或减压范围过小,无法达到改善外观畸形、恢复脊柱平衡、解除神经受压的目的;截骨或减压范围过大,容易破坏脊柱结构的稳定性,更加容易造成神经功能的损害,因此精确的截骨范围是手术疗效的关键保证。
3D打印技术可以重现脊柱病变区的解剖结构。从而为截骨线的设计提供直观、立体、感性的实物模型,帮助医生设计更加科学严谨的截骨线[31].另外3D打印技术可以设计个体化的截骨导板,术者在导板的指引下能够更加准确的完成截骨,显着提高了修复手术的精确性[32-33],实现了脊柱截骨、减压、开窗手术从经验论到数字化的转化,并简化了术式,制定的标准化治疗模式对临床工作具有重大的指导意义。
2.4.3 个体化内置物的定制
3D打印技术还可应用于脊柱外科内植物的个体化定制,即术者根据患者实际情况定制个体化的内植物,以满足解剖学、人体工程学、生物力学等不同方面的特殊要求。如椎间隙很宽、较小的儿童,造成患者所需内植物太大或太小,或需要与患者局部解剖结构更为贴附的内植物以提高手术疗效时,在这些特殊情况下则需要定制个体化的内植物,3D打印技术可以满足定制个体化内置物多样性、复杂性和快速性的要求。
钱文彬等[34]在全脊椎整块切除术中,应用3D打印技术打印椎体,置入实验土猪体内。并且术后观察示实验土猪双后腿活动、痛觉良好。而且术后影像学检查提示假体位置、椎间高度、椎体序列良好。个体化内置物可保证几何形态的完美匹配,理论上更加贴附周围结构。
2.5 骨组织工程中的应用
在骨组织工程方面,3D打印技术由于材料选择的多样性,主要用于制作结构复杂的骨组织工程支架[35-37],甚至打印人工骨骼、椎体[38].3D打印技术可以满足患者个体化定制的需求。可根据需要设定特定的孔隙率、交联,使其有利于细胞的长入,并可以完美匹配支架的降解速度与成骨的速度[39].理想的骨组织工程支架不仅要具备能够满足细胞长入、完美匹配缺损骨组织结构的多孔结构,还应具有良好的机械强度。随着新材料的快速发展,3D打印技术已可以实现通过改良支架的内部结构特征增强支架的机械性能[40-48].
此外,3D打印技术可以通过控制支架孔隙率以满足某些特殊要求。Zhao等[49]以左旋聚乳酸粉末和左氧氟沙星和妥布霉素为原料,应用3D打印技术成功制备出多药控释型载药人工骨。随着3D打印技术在组织工程领域的应用,活细胞也作为打印材料的一部分[50],在制备组织工程支架的同时被一同打印出来。
3 展望与探讨Prospects and exploration
脊柱解剖结构复杂,部位深在,周围毗邻神经及血管,手术风险较高。而手术成功的关键与正确的疾病诊断、责任节段的定位以及合理的术前规划密切相关,随着3D打印技术的不断发展以及人们对3D打印技术在临床方面的应用研究,借助3D打印技术,对脊柱疾病患者进行疾病诊断、医患沟通、术前规划设计,手术模拟操作、优化手术器械、预测评估手术效果等提供了一种新的方法。
3D打印技术既能明显提高手术的成功率,缩短手术时间,提高手术的精确性,又能有效地减少手术并发症的发生。3D打印技术做为一种新的仿真学研究方法,具有精确性、可重复性、安全性的优点,目前已经在脊柱外科研究领域中广泛应用。
目前3D打印技术的在脊柱外科的应用已经逐渐渗透到多个方面,但大都集中在钉道导板的椎弓根置钉应用及术前手术方案规划与模拟上,而在基础研究中3D打印骨组织工程研究较多,3D打印技术的基础在于影像学资料的质量,计算机三维重建的三维模型与患者实体有一定的的差别,影像资料的质量越高计算机三维重建的实物模型的仿真性越高,越接近患者脊柱实体的解剖结构。
相信随着相关技术的发展,3D打印技术在脊柱外科领域的应用会进一步深入,如随着影像学的发展,利用3D打印技术打印脊柱局部部位的三维解剖结构,辅助脊柱外科相关疾病的精确诊断、提高医患沟通和教学的效果、定制个体化高精度修复方案、术中多样式钉道导板定制等应用也将逐步得到推广,随着人体工程学的引入,个体化定制脊柱支具也将逐步推广,而随着材料学的发展,3D打印个体化内植物也将进入临床应用,而随着生物材料学、组织细胞培养技术以及3D打印技术的发展,实现细胞打印骨组织修复脊柱骨组织缺损将成为可能。
4 参考文献References
[1] Rengier F,Mehndiratta A, von Tengg-Kobligk H, et al. 3Dprinting based on imaging data: review of medicalapplications. Int J Comput Assist Radiol Surg. 2010; 5(4):335-341.
[2] 付军,郭征,王臻,等。多种3-D打印手术导板在骨肿瘤切除重建手术中的应用[J]. 中国修复重建外科杂志, 2014, 28(3): 304-308.
[3] Bagaria V, Deshpande S, Rasalkar DD, et al. Use of rapidprototyping and three-dimensional reconstruction modeling inthe management of complex fractures. Eur J Radiol. 2011;80(3): 814-820.
[4] Hananouchi T, Saito M, Koyama T, et al. Tailor-made surgicalguide based on rapid prototyping technique for cup insertionin total hip arthroplasty. Int J Med Robot. 2009; 5(2): 164-169.
[5] Shu DL, Liu XZ, Guo B, et al. Accuracy of using computer-aided rapid prototyping templates for mandible reconstructionwith an iliac crest graft. World J Surg Oncol. 2014;12: 190.
[6] Taft RM, Kondor S, Grant GT. Accuracy of rapid prototypemodels for head and neck reconstruction. J Prosthet Dent.2011;106(6): 399-408.
[7] 彭峰。 应用快速成型和激光近形制造技术制作磨牙全冠的实验探究与分析[J]. 海南医学院学报,2013,19(5): 693-695.
[8] Tricot M, Duy KT, Docquier PL. 3D-corrective osteotomyusing surgical guides for posttraumatic distal humeraldeformity. Acta Orthop Belg. 2012;78(4): 538-542.
[9] Benum P, Aamodt A, Nordsletten L. Customised femoralstems in osteopetrosis and the development of a guidingsystem for the preparation of an intramedullary cavity: areport of two cases. J Bone Joint Surg Br. 2010;92(9):1303-1305.
[10] Pang L, Hao W, Jiang M, et al. Bony defect repair in rabbitusing hybrid rapid prototyping polylactic-co-glycolic acid/beta-tricalciumphosphate collagen I/apatite scaffold and bonemarrow mesenchymal stem cells. Indian J Orthop. 2013;47(4):388-394.
[11] Singh H, Shimojima M, Shiratori T, et al. Application of 3DPrinting Technology in Increasing the Diagnostic Performanceof Enzyme-Linked Immunosorbent Assay (ELISA) forInfectious Diseases. Sensors (Basel)。 2015;15(7): 16503-15.
[12] D'Urso PS, Barker TM, Earwaker WJ, et al. Stereolithographicbiomodelling in cranio-maxillofacial surgery: a prospectivetrial. J Craniomaxillofac Surg. 1999;27(1): 30-37.
[13] Cartiaux O, Paul L, Francq BG, et al. Improved accuracy with3D planning and patient-specific instruments during simulatedpelvic bone tumor surgery. Ann Biomed Eng. 2014;42(1):205-213.
[14] Faur C, Crainic N, Sticlaru C, et al. Rapid prototypingtechnique in the preoperative planning for total hiparthroplasty with custom femoral components. Wien KlinWochenschr. 2013;125(5-6): 144-149.
[15] Debarre E, Hivart P, Baranski D, et al. Speedy skeletalprototype production to help diagnosis in orthopaedic andtrauma surgery. Methodology and examples of clinicalapplications. Orthop Traumatol Surg Res. 2012;98(5): 597-602.
[16] 冯珍,杨初燕,吴磊,等。个体化截瘫行走支具对脊髓损伤患者功能的影响[J].中国康复医学杂志,2010,25(9): 854-857.
[17] 张俊,郭英,李克峰。肩部骨折体外再现技术在骨科教学中的应用[J]. 医学教育探索,2010,9(9): 1246-1248.
[18] 笪熠,陈适,潘慧,等。 3D打印技术在医学教育的应用[J]. 协和医学杂志,2014,(2): 234-237.
[19] Zhang S, Liu X, Xu Y, et al. Application of rapid prototyping fortemporomandibular joint reconstruction. J Oral MaxillofacSurg. 2011;69(2): 432-8.
[20] Sanghera B, Naique S, Papaharilaou Y, et al. Preliminarystudy of rapid prototype medical models. Rapid Prot J. 2001;7(5):275-284.
[21] Hieu LC, Zlatov N, Sloten JV, et al. Medical rapid prototypingapplications and thods. Assemb Aut. 2005; 25(4): 284-292.
[22] Lu S, Zhang YZ, Wang Z, et al. Accuracy and efficacy ofthoracic pedicle screws in scoliosis with patient-specific drilltemplate. Med Biol Eng Comput. 2012;50(7): 751-758.
[23] Fu M, Lin L, Kong X, et al. Construction and accuracyassessment of patient-specific biocompatible drill template forcervical anterior transpedicular screw (ATPS) insertion: an invitro study. PLo S One. 2013; 8(1): e53580.
[24] 戎帅,滕勇,乌日开西·艾依提,等。基于3D打印技术的腰椎多节段峡部裂个性化手术治疗[J].中国矫形外科杂志,2013, 21(21):2222-2226.
[25] Yang M, Li C, Li Y, et al. Application of 3D rapid prototypingtechnology in posterior corrective surgery for Lenke 1adolescent idiopathic scoliosis patients. Medicine (Baltimore)。2015; 94(8): e582.
[26] 章凯,陈育岳,夏虹等。 3D打印技术辅助复杂性寰枢椎脱位手术临床应用[J].中国数字医学,2013, 8(10): 58-60.
[27] Lu S, Zhang YZ, Wang Z, et al. Accuracy and efficacy ofthoracic pedicle screws in scoliosis with patient-specific drilltemplate. Med Biol Eng Comput. 2012;50(7): 751-758.
[28] Wu ZX, Huang LY, Sang HX, et al. Accuracy and safetyassessment of pedicle screw placement using the rapidprototyping technique in severe congenital scoliosis. J SpinalDisord Tech. 2011;24(7): 444-450.
[29] Mao K, Wang Y, Xiao S, et al. Clinical application ofcomputer-designed polystyrene models in complex severespinal deformities: a pilot study. Eur Spine J. 2010;19(5):797-802.
[30] Duart CJ, Llombart BR, Beguiristain GJL. [Morphologicalchanges in scoliosis during growth. Study in the human spine].Rev Esp Cir Ortop Traumatol. 2012;56(6): 432-438.
[31] Levine JP, Patel A, Saadeh PB, et al. Computer-aided designand manufacturing in craniomaxillofacial surgery: the newstate of the art. J Craniofac Surg. 2012;23(1): 288-293.
[32] Zhang YZ, Lu S, Chen B, et al. Application of computer-aideddesign osteotomy template for treatment of cubitus varusdeformity in teenagers: a pilot study. J Shoulder Elbow Surg.2011; 20(1): 51-56.
[33] Tricot M, Duy KT, Docquier PL. 3D-corrective osteotomyusing surgical guides for posttraumatic distal humeraldeformity. Acta Orthop Belg. 2012;78(4): 538-542.
[34] 钱文彬,杨欣建,蓝涛,等。 3D技术打印椎体在全脊椎整块切除术中应用的初步探索[J].生物骨科材料与临床研究,2015,12(2):9-11.
[35] 李祥,王成焘。快速成形技术制造组织工程支架研究进展[J]. 生物工程学报,2008,24(8): 1321-1326.
[36] Peltola SM, Melchels FP, Grijpma DW, et al. A review of rapidprototyping techniques for tissue engineering purposes. AnnMed. 2008;40(4): 268-280.
[37] Hoque ME, Hutmacher DW, Feng W, et al. Fabrication usinga rapid prototyping system and in vitro characterization ofPEG-PCL-PLA scaffolds for tissue engineering. J BiomaterSci Polym Ed. 2005;16(12): 1595-1610.
[38] 李涤尘,卢秉恒,吴永辉,等。人工生物活性骨骼的快速制造方法研究[J].中国机械工程, 2000,11(z1): 103-105.
[39] Wang C, Xue Y, Lin K, et al. The enhancement of boneregeneration by a combination of osteoconductivity andosteostimulation using beta-Ca Si O3/beta-Ca3(PO4)2composite bioceramics. Acta Biomater. 2012;8(1):350-360.
[40] Liu FH. Synthesis of bioceramic scaf olds for bone tissueengineering by rapid prototyping technique. J Sol-Gel SciTechnol. 2012;64(3):704-710.
[41] Quadrani P, Pasini A, Mattiolli-Belmonte M, et al.High-resolution 3D scaffold model for engineered tissuefabrication using a rapid prototyping technique. Med Biol EngComput. 2005;43(2): 196-199.
[42] Yao Q, Wei B, Guo Y, et al. Design, construction andmechanical testing of digital 3D anatomical data-basedPCL-HA bone tissue engineering scaffold. J Mater Sci MaterMed. 2015;26(1): 5360.
[43] Wu WG,Zheng QX,Guo XD, et al. The Controlled-releasingDrug Implant based on the Three Dimensional PrintingTechnology: Fabrication and Properties of Drug Releasing invivo. J Wuhan Univers Technol. 2009;24(6):977-981.
[44] Lee JW, Cho DW. 3D Printing technology over a drug deliveryfor tissue engineering. Curr Pharm Des. 2015;21(12):1606-1617.
[45] Zopf DA, Mitsak AG, Flanagan CL, et al. Computeraided-designed, 3-dimensionally printed porous tissuebioscaffolds for craniofacial soft tissuereconstruction.Otolaryngol Head Neck Surg. 2015;152(1):57-62.
[46] Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensionalprinting of complex biological structures by freeformreversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758.
[47] Hourd P, Medcalf N, Segal J, et al. A 3D bioprinting exemplarof the consequences of the regulatory requirements oncustomized processes. Regen Med. 2015;10(7):863-883.
[48] Jung JW, Lee H, Hong JM, et al. A new method of fabricatinga blend scaffold using an indirect three-dimensional printingtechnique. Biofabrication. 2015;7(4):045003.
[49] Zhao Y, Li Y, Mao S,et al. The influence of printing parameterson cell survival rate and printability in microextrusion-based3Dcell printing technology.Biofabrication. 2015;7(4):045002.
[50] Xu T, Binder KW, Albanna MZ, et al. Hybrid printing ofmechanically and biologically improved constructs forcartilage tissue engineering applications. Biofabrication. 2013;5(1): 015001.
相关标签: