相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。那么对于相关性分析论文怎么写?下面我们就为大家简单介绍一下吧!
一、相关性分析论文怎么写?
相关分析就是对总体中确实具有联系的标志进行分析,其主体是对总体中具有因果关系标志的分析。它是描述客观事物相互间关系的密切程度并用适当的统计指标表示出来的过程。在一段时期内出生率随经济水平上升而上升,这说明两指标间是正相关关系;而在另一时期,随着经济水平进一步发展,出现出生率下降的现象,两指标间就是负相关关系。
相关分析在工农业、水文、气象、社会经济和生物学等方面都有应用。
例如,人的身高和体重之间;空气中的相对湿度与降雨量之间的相关关系都是相关分析研究的问题。相关分析与回归分析之间的区别:回归分析侧重于研究随机变量间的依赖关系,以便用一个变量去预测另一个变量;相关分析侧重于发现随机变量间的种种相关特性。
为了确定相关变量之间的关系,首先应该收集一些数据,这些数据应该是成对的。例如,每人的身高和体重。然后在直角坐标系上描述这些点,这一组点集称为"散点图".
根据散点图,当自变量取某一值时,因变量对应为一概率分布,如果对于所有的自变量取值的概率分布都相同,则说明因变量和自变量是没有相关关系的。反之,如果,自变量的取值不同,因变量的分布也不同,则说明两者是存在相关关系的。
两个变量之间的相关程度通过相关系数r来表示。相关系数r的值在-1和1之间,但可以是此范围内的任何值。正相关时,r值在0和1之间,散点图是斜向上的,这时一个变量增加,另一个变量也增加;负相关时,r值在-1和0之间,散点图是斜向下的,此时一个变量增加,另一个变量将减少。r的绝对值越接近1,两变量的关联程度越强,r的绝对值越接近0,两变量的关联程度越弱。
相关关系
相关分析与回归分析在实际应用中有密切关系。然而在回归分析中,所关心的是一个随机变量Y对另一个(或一组)随机变量X的依赖关系的函数形式。而在相关分析中 ,所讨论的变量的地位一样,分析侧重于随机变量之间的种种相关特征。例如,以X、Y分别记小学生的数学与语文成绩,感兴趣的是二者的关系如何,而不在于由X去预测Y.
确定相关关系的存在,相关关系呈现的形态和方向,相关关系的密切程度。其主要方法是绘制相关图表和计算相关系数。
1)相关表
编制相关表前首先要通过实际调查取得一系列成对的标志值资料作为相关分析的原始数据。
相关表的分类:简单相关表和分组相关表。单变量分组相关表:自变量分组并计算次数,而对应的因变量不分组,只计算其平均值;该表特点:使冗长的资料简化,能够更清晰地反映出两变量之间相关关系。双变量分组相关表:自变量和因变量都进行分组而制成的相关表,这种表形似棋盘,故又称棋盘式相关表。
2)相关图
利用直角坐标系第一象限,把自变量置于横轴上,因变量置于纵轴上,而将两变量相对应的变量值用坐标点形式描绘出来,用以表明相关点分布状况的图形。相关图被形象地称为相关散点图。因素标志分了组,结果标志表现为组平均数,所绘制的相关图就是一条折线,这种折线又叫相关曲线。
3)相关系数
1、相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
2、确定相关关系的数学表达式。
3、确定因变量估计值误差的程度。
以上就是"相关性分析论文怎么写?"的全部介绍,希望对大家在应用相关性分析时有所帮助。