Celsion 公司开发的多柔比星热敏脂质体 ThermoDox,在 40 ℃时 5 min 内即可释放 60%~70%, 而在 37 ℃时 30 min 仅能释放约 20%[34].在体内, 静脉给予5 mg·kg1药物后, 将肿瘤组织加热到 42 ℃, 肿瘤中药物浓度达到约 25 ng·mg1, 而普通脂质体在肿瘤部位的浓度仅为 7~8 ng·mg1.经过 60 天 ThermoDox治疗后, 85%荷鳞状细胞癌皮下瘤小鼠的肿瘤完全消失, 而普通脂质体仅能延缓肿瘤生长[35].在 2015 年的II 期临床试验中, ThermoDox 联合放射热疗 (radiof-requency thermal ablation) 将患者的整体生存期从单独进行放射热疗的 53.6 个月提高到 79 个月。
纳米递药系统在取得诸多成绩的同时, 仍然面临多种瓶颈问题: ① 纳米材料的安全性。目前仅有少数材料获准注射, 极大限制了纳米递药系统的产业化和临床应用, 因此设计生物相容性良好、可降解的纳米材料成为本领域的重要课题; ② 靶向递药系统的体内行为仍然有待探索。靶向递药系统的尺度为纳米级, 其体内吸收、分布转运和代谢等过程均具有特殊性。如部分纳米材料代谢和排泄很慢, 从而容易发生蓄积, 产生毒性。只有全面阐释靶向递药系统的体内行为才能更好的指导其设计; ③ 靶向递药系统的规模化生产。许多新型纳米递药系统的制备流程过于复杂而难以规模化生产, 因此如何优化新型纳米递药系统的制备流程, 设计更精密的工业化生产设备, 是纳米递药系统产业化必须克服的屏障。
4 展望。
随着医学、药学和材料学等发展, 新型递药系统层出不穷, 能够不断满足人们越来越高的用药需求。
总体而言, 新型递药系统的研究目的均在于不断提高用药顺应性和增效、减毒。但许多新型递药系统仍然有待完善, 尤其是制剂辅料的安全性、制剂工艺的可操作性和可控性、制剂应用的普适性。目前, 速效递药系统、缓控释递药系统已有扎实的理论基础, 已经进入临床应用阶段并有较多品种上市, 制剂的难度也较低。但针对重大疾病的响应性递药系统、生物药物递药系统及靶向递药系统仍面临诸多问题, 需要深入开展应用基础研究并逐步走向临床应用。生物药物递药系统的研究意义重大、涉及面广, 但目前的研究水平较低, 无法充分满足临床需求, 仍然存在巨大的发展空间。靶向递药系统的研究得到广泛关注,但仍面临众多问题, 尤其是产业化问题亟待解决。对疾病特征的深入研究、对药物制剂体内行为的全面了解及个性化医疗的开展有助于对症用药, 进一步提高新型递药系统的应用价值。
References:
[1] Hirani JJ, Rathod DA, Vadalia KR. Orally disintegratingtablets: a review [J]. Tropical J Pharm Res, 2009, 8: 161172.
[2] Badgujar BP, Mundada AS. The technologies used for deve-loping orally disintegrating tablets: a review [J]. Acta Pharm,2011, 61: 117139.
[3] Hannan PA, Khan JA, Khan A, et al. Oral dispersible system:a new approach in drug delivery system [J]. Indian J PharmSci, 2016, 78: 27.
[4] Badhan RK, Kaur M, Lungare S, et al. Improving brain drugtargeting through exploitation of the nose-to-brain route: aphysiological and pharmacokinetic perspective [J]. CurrDrug Deliv, 2014, 11: 458471.
[5] Mohanty C, Kundu P, Sahoo SK. Brain targeting of siRNAvia intranasal pathway [J]. Curr Pharm Des, 2015, 21: 46064613.
[6] Meredith ME, Salameh TS, Banks WA. Intranasal delivery ofproteins and peptides in the treatment of neurodegenerativediseases [J]. AAPS J, 2015, 17: 780787.
[7] Volkow ND, Frieden TR, Hyde PS, et al. Medication-assis-tedtherapies-tackling the opioid-overdose epidemic [J]. NEngl J Med, 2014, 370: 20632066.
[8] Strang J, McDonald R, Alqurshi A, et al. Naloxone withoutthe needle - systematic review of candidate routes for non-injectable naloxone for opioid overdose reversal [J]. DrugAlcohol Depend, 2016, 163:1623.
[9] Krieter P, Chiang N, Gyaw S, et al. Pharmacokinetic proper-ties and human use characteristics of an FDA-approved intra-nasal naloxone product for the treatment of opioid overdose [J].J Clin Pharmacol, 2016, 56: 12431253.
[10] Winner P, Farkas V, tillová H, et al. Efficacy and tolerabilityof zolmitriptan nasal spray for the treatment of acute migrainein adolescents: results of a randomized, double-blind, multi-center, parallel-group study (TEENZ) [J]. Headache, 2016,56: 11071119.
[11] Tepper SJ, Chen S, Reidenbach F, et al. Intranasal zolmitriptanfor the treatment of acute migraine [J]. Headache, 2013, 53Suppl 2: 6271.
[12] Wolff RK. Toxicology studies for inhaled and nasal delivery[J]. Mol Pharm, 2015, 12: 26882696.
[13] Wang XF, Wang JM, Sun AQ, et al. Research progress inrelease mechanism and forms of pulse delivery system [J].Chin J New Drugs (中国新药杂志), 2016, 25: 664667.
[14] Taha EI. Bioavailability assessment of hydroxymethylglu-taryl coenzyme A reductase inhibitor utilizing pulsatile drugdelivery system: a pilot study [J]. Drug Deliv, 2016, 23:21392143.
[15] Marwah H, Garg T, Goyal AK, et al. Permeation enhancerstrategies in transdermal drug delivery [J]. Drug Deliv, 2016,23: 564578.
[16] Yu J, Zhang Y, Ye Y, et al. Microneedle-array patches loadedwith hypoxia-sensitive vesicles provide fast glucose-responsiveinsulin delivery [J]. Proc Natl Acad Sci U S A, 2015, 112:82608265.
[17] Chen MC, Ling MH, Wang KW, et al. Near-infrared light-responsive composite microneedles for on-demand transdermaldrug delivery [J]. Biomacromolecules, 2015, 16: 15981607.
[18] Loftsson T, Brewster ME. Pharmaceutical applications ofcyclodextrins: basic science and product development [J]. JPharm Pharmacol, 2010, 62: 16071621.
[19] Gelderblom H, Verweij J, Nooter K, et al. Cremophor EL:the drawbacks and advantages of vehicle selection for drugformulation [J]. Eur J Cancer, 2001, 37: 15901598.
[20] Kalepu S, Nekkanti V. Insoluble drug delivery strategies:review of recent advances and business prospects [J]. Acta Pharm Sin B, 2015, 5: 442453.
[21] Maiti K, Mukherjee K, Gantait A, et al. Curcumin-phospholipid complex: preparation, therapeutic evaluation andpharmacokinetic study in rats [J]. Int J Pharm, 2007, 330:155163.
[22] Guo Y, Liu X, Sun X, et al. Mannosylated lipid nano-emulsions loaded with lycorine-oleic acid ionic complex fortumr cell-specific delivery [J]. Theranostics, 2012, 2: 11041114.
[23] Junyaprasert VB, Morakul B. Nanocrystals for enhancementof oral bioavailability of poorly water-soluble drugs [J].Asian J Pharmaceut Sci, 2015, 10: 1323.
[24] Chen H, Khemtong C, Yang X, et al. Anonization strategiesfor poorly water-soluble drugs [J]. Drug Discov Today, 2011,16: 354360.
[25] Li W, Yang Y, Tian Y, et al. Preparation and in vitro/in vivoevaluation of revaprazan hydrochloride nanosuspension [J].Int J Pharm, 2011 408: 157162.
[26] Kim TY, Kim DW, Chung JY, et al. Phase I and pharmacoki-netic study of Genexol-PM, a cremophor-free, polymericmicelle-formulated paclitaxel, in patients with advancedmalignancies [J]. Clin Cancer Res, 2004, 10: 37083716.
[27] Singer JW, Shaffer S, Baker B, et al. Paclitaxel poliglumex(XYOTAX; CT-2103): an intracellularly targeted taxane [J].Anticancer Drugs, 2005, 16: 243254.
[28] Mitragotri S, Burke PA, Langer R. Overcoming the challengesin administering biopharmaceuticals: formulation and deliverystrategies [J]. Nat Rev Drug Discov, 2014, 13: 655672.
[29] Pfister D, Morbidelli M. Process for protein PEGylation [J].J Control Release, 2014, 180: 134149.
[30] Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectorsfor gene-based therapy [J]. Nat Rev Genet, 2014, 15: 541555.
[31] Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals(part 1): products on the market [J]. Int J Nanomedicine,2014, 9: 43574373.
[32] Ruan S, Yuan M, Zhang L, et al. Tumor microenvironmentsensitive doxorubicin delivery and release to glioma usingangiopep-2 decorated gold nanoparticles [J]. Biomaterials,2015, 37: 425435.
[33] Chen J. Development of targeting thermosensitive liposomesfor tumor treatment [J]. Acta Pharm Sin (药学学报), 2011,46: 502506.
[34] May JP, Li SD. Hyperthermia-induced drug targeting [J].Expert Opin Drug Deliv, 2013, 10: 511527.
[35] Ponce AM, Vujaskovic Z, Yuan F, et al. Hyperthermiamediated liposomal drug delivery [J]. Int J Hyperthermia,2006, 22: 205213.