学术堂首页 | 文献求助论文范文 | 论文题目 | 参考文献 | 开题报告 | 论文格式 | 摘要提纲 | 论文致谢 | 论文查重 | 论文答辩 | 论文发表 | 期刊杂志 | 论文写作 | 论文PPT
学术堂专业论文学习平台您当前的位置:学术堂 > 毕业论文 > 在职硕士论文 > 同等学力硕士论文 > 临床医学硕士论文

直肠癌N分期的影响因素研究

来源:吉林大学 作者:戚译天
发布于:2019-04-04 共4797字
  中文摘要
  
  目的:
  
  探讨影响淋巴结转移的结外相关危险因素在评价直肠癌淋巴结转移中的价值。
  
  方法:
  
  收集吉林大学中日联谊医院放射线科自2016年1月至2017年12月期间诊断的108例行直肠癌根治术的原发性直肠癌患者。所有患者均在术前行电子纤维结肠镜检查并且病理确诊为直肠癌;术前均行MRI检查,并在检查后1星期内在全直肠系膜切除术原则下行直肠癌根治术并在术后进行病理学检查。收集的影像学及病理学资料包括:肿瘤的N分期、肿瘤的位置、肿瘤大小、肿瘤浸润深度、肿瘤分化程度、肿瘤环周切缘、脉管内癌栓和神经受累程度。
  
  应用spss22.0对数据进行统计学分析。采用双变量Spearman等级系数法对可能影响直肠癌N分期的因素进行相关分析,探讨逐一因素与N分期之间的相关性。为进一步探讨影响直肠癌N分期的重要因素,在已做完各项因素独立性的基础之上(选取分析结果中P<0.05的变量),采用多项Logistic回归分析,将N分期(细分为N0、N1a、N1b、N1c、N2a、N2b)设置为因变量,肿瘤的环周切缘、肿瘤的分化程度、脉管内癌栓、神经累及程度设置为变量,进行多项Logistic回归分析,探讨这些因素与直肠癌N分期(细分)之间的关系;采用多项Logistic回归分析,将N分期(粗分为N0、N1、N2)设置为因变量,肿瘤的分化程度、环周切缘、脉管内癌栓、神经累及程度设置为变量,进行多项Logistic回归分析,探讨这些因素与直肠癌N分期(粗分)之间的关系;采用二元Logistic回归分析,将N分期(N0、N1a、N1b、N1c捏合为N01,N2a、N2b捏合为N2)设置为因变量,肿瘤的环周切缘、肿瘤的分化程度、脉管内癌栓、神经累及程度设置为变量,进行二元Logistic回归分析,探讨这些因素与直肠癌N分期(二值)之间的关系。

直肠癌N分期的影响因素研究
  
  结果:
  
  1、肿瘤位置和肿瘤的大小与直肠癌N分期没有相关性,差异无统计学意义(P>0.05)。肿瘤浸润深度与直肠癌N分期有显着正相关(Sig=0.013<0.05,P=0.220);肿瘤分化程度与直肠癌N分期有显着负相关(Sig=0.000<0.01,P=-0.396)、肿瘤环周切缘与直肠癌N分期有显着正相关(Sig=0.000<0.01,P=0.389)、脉管内癌栓与直肠癌N分期有显着正相关(Sig=0.000<0.01,P=0.514)、神经受累程度与直肠癌N分期有显着正相关(Sig=0.001<0.01,P=0.396)。
  
  2、在多项Logistic回归分析中,影响直肠癌N分期(细分)的重要因素是脉管内癌栓和环周切缘,但N1a、N1b、N1c、N2a在这个回归模型下,不能很好的得到概率预测。调整模型后可看出,在影响直肠癌N分期(粗分)的多项Logistic回归分析中,影响直肠癌N分期的重要因素依然是脉管内癌栓和环周切缘。二元Logistic回归分析模型中,可以通过脉管内癌栓、神经累及、环周切缘,对N分期的概率进行预测(判断为N0、1分期,还是N2分期)。其中脉管内癌栓与环周切缘依然是影响N分期的重要因素。
  
  结论:
  
  1、肿瘤的浸润深度、肿瘤分化程度、环周切缘、脉管内癌栓与神经累及情况是直肠癌淋巴结转移的结外相关危险因素;肿瘤的位置、肿瘤的大小与直肠癌淋巴结转移无关。
  
  2、脉管内癌栓和环周切缘在三个不同的 N 分期模型中均有显着的影响性和相关性。
  
  关键词: 直肠癌,淋巴结转移,N分期,脉管内癌栓,环周切缘。
  
  Abstract
  
  Object:
  
  To evaluate the value of extranodal risk factors for lymph nodemetastasis in rectal carcinoma.
  
  Materials and Methods:
  
  108 patients with primary rectal cancer had been hospitalizedin the radiology department of China-Japan Union Hospital of JilinUniversity from January 2016 to December 2017 were included inthe study. All patients received electronic fibro-colonoscopeexamination before operation and were diagnosed as rectalcarcinoma. All patients received surgery treatment in one weekafter MRI examination and the tumor specimen receivedpostoperative pathological examination. Radical resection ofrectal carcinoma was under the principle of total mesorectalexcision. The collection data of imaging and pathology include theN stage, the location and size of the tumor, invasion depth of tumor,degree of differentiation, circumferential resection margin,intravascular tumor thrombus and nerve involvement.
  
  The data were statistically analyzed with spss22.0. Twovariables Spearman rank coefficient method was used to analyzethe factors that may influence the N staging of rectal cancer, and toexplore the correlation between one by one factor and N stage. To further explore the factors that affecting the N staging of rectalcancer, on the basis of the independence of various factors(selecting the variables of P<0.05 in the analysis results), multiplelogistic regression analysis was used to set the N staging(subdivided into N0, N1a, N1b, N1c, N2a, N2b) to be variable, anddegree of differentiation, circumferential resection margin,intravascular tumor thrombus and nerve involvement were set asvariables. Multiple logistic regression analysis was conducted toexplore the relationship between these factors and N staging(subdivision) of rectal cancer. Using multiple logistic regressionanalysis to set the N staging (as N0, N1, N2) to be variable, anddegree of differentiation, circumferential resection margin,intravascular tumor thrombus and nerve involvement were set asvariables. Multiple Logistic regression analysis was conducted toexplore the relationship between these factors and N staging(rough division) of rectal cancer. Using binary logistic regressionanalysis, N staging (N0, N1a, N1b, N1c were merged into N01, N2a,N2b merged into N2) to be variable, and degree of differentiation,circumferential resection margin, intravascular tumor thrombus andnerve involvement were set as variables. Binary logistic regressionanalysis was conducted to explore the relationship between thesefactors and N staging (two value) of rectal cancer.Results:
  
  1. Both the location and size of the tumor are not related to Nstage of rectal cancer, there are no statistic difference betweenthem(P>0.05). There is a significant positive correlation betweeninvasion depth of tumor and N stage of rectal cancer(sig=0.013<0.05,P=0.220); degree of differentiation is significantlynegative correlated with N stage of rectal cancer (Sig=0.000<0.01,P=-0.396); circumferential resection margin is significantly positivecorrelated with N stage of rectal cancer(Sig=0.000<0.01,P=0.389);intravascular tumor thrombus is significantly positive correlated withN stage of rectal cancer (Sig=0.000<0.01,P=0.514), and nerveinvolvement is significantly positive correlated with N stage of rectalcancer (Sig=0.001<0.01,P=0.396).
  
  2. In multiple logistic regression analysis, the important factorsthat affect the N staging (subdivision) of rectal cancer areintravascular tumor thrombus and circumferential resection margin,but N1a, N1b, N1c and N2a can not be well predicted by thisregression model. After adjusting the model, we can see that in themultiple logistic regression analysis that affects the N staging(roughdivision) of rectal cancer, the important factors that affect the Nstaging of rectal cancer are still intravascular tumor thrombus and circumferential resection margin. In the binary logistic regressionanalysis model, the probability of N staging can be predicted by theintravascular tumor thrombus, nerve involvement andcircumferential resection margin (judging as N0, N1 or N2 staging).
  
  Among them, intravascular tumor thrombus and ccircumferentialresection margin are still important factors affecting N staging.
  
  Conclusions:
  
  1.Invasion depth of tumor, degree of differentiation,circumferential resection margin, intravascular tumor thrombus andnerve involvement are associated with lymph node metastasis ofrectal carcinoma.
  
  2.Intravascular tumor thrombus and circumferential resectionmargin have significant influence an correlation in three differentN-staging models.
  
  Keywords: Rectal carcinoma , Lymph node metastasis , N stage ,Intravascular tumor thrombus,Circumferential resection margin。
  
  第 1 章 前言
  
  直肠癌(Rectal Carcinoma)是最常见的消化系统恶性肿瘤之一[1],约占结直肠癌的 50%-70%[2],占全身恶性肿瘤的 15%[3],并且其发病率有逐年上升的趋势,严重威胁着人们的健康。在我国,直肠癌的发病率和死亡率位居第五位[4];在欧美等西方国家,其发病率及死亡率居第二位[5]。目前,对于直肠癌的发病原因尚未完全明确,但普遍认为其可能与高动物脂肪及动物蛋白的饮食习惯、遗传易感性因素、环境变化及精神因素有关。
  
  直肠癌的治疗方法在近年来取得了较大进展,全直肠系膜切除术及新辅助放化疗的使用,降低了局部复发率,延长了患者生存率。MRI是目前常用并且有效的检查方法,结直肠镜和病理学检查是确诊直肠癌的“金标准”。淋巴结转移是直肠癌局部复发的重要危险因素[6]。既往关于直肠癌转移淋巴结的评估更关注淋巴结自身,如淋巴结的直径大小、短长径比、边缘、密度、信号以及数目等方面,但其诊断淋巴结转移的准确度均不理想。目前对除淋巴结本身以外的因素报道有限,并且研究结果大部分是小样本量的病例资料,釆用单因素分析的统计学方法,并不能排除各因素间的相互作用的影响,也未能找出影响直肠癌淋巴结转移最主要的因素。因此,本文拟探讨直肠癌淋巴结的结外因素,如肿瘤生长位置、肿瘤大小、肿瘤浸润深度、肿瘤分化程度、脉管内癌栓及神经累及等在评价直肠癌淋巴结转移中的价值,旨在提高直肠癌区域淋巴结良恶性的诊断效价。
【由于本篇文章为硕士论文,如需全文请点击底部下载全文链接】
  
  第 2 章 研究对象和方法
  

  2.1 病例资料
  2.2 检查方法
  2.3 判断标准
  2.4 图像分析
  2.5 病理检查
  2.6 数据处理
  2.6.1 收集的数据包括
  2.6.2 分类变量的分组
  2.6.3 本文涉及的统计学方法
  
  第 3 章 结果
  

  3.1 病例数据的简单数据统计
  3.2 直肠癌的 N 分期与各项变量的双变量 Spearman 等级系数法相关分析结果
  3.2.1 肿瘤位置(肿瘤下缘距肛缘距离)与直肠癌 N 分期的关系
  3.2.2 肿瘤大小(病变长度)与直肠癌 N 分期的关系
  3.2.3 肿瘤浸润深度(直肠癌 T 分期)与直肠癌 N 分期的关系
  3.2.4 肿瘤的分化程度与直肠癌 N 分期的关系
  3.2.5 肿瘤的环周切缘与直肠癌 N 分期的关系
  3.2.6 脉管内癌栓与直肠癌 N 分期的关系
  3.2.7 神经累及程度与直肠癌 N 分期的关系
  3.3 直肠癌 N 分期(细分)的多因素 Logistic 回归分析结果
  3.4 直肠癌 N 分期(粗分)的多因素 Logistic 回归分析结果
  3.5 直肠癌 N 分期(二值)的二元 Logistic 回归分析结果
  
  第 4 章 讨论
  
  4.1 肿瘤的位置
  4.2 肿瘤的大小
  4.3 肿瘤浸润深度
  4.4 肿瘤分化程度
  4.5 环周切缘
  4.6 脉管内癌栓及神经累及程度

  第 5 章 结论

  1、肿瘤的浸润深度、肿瘤分化程度、环周切缘、脉管内癌栓与神经累及情况是直肠癌淋巴结转移的结外相关危险因素;肿瘤的位置、肿瘤的大小与直肠癌淋巴结转移无关。

  2、脉管内癌栓和环周切缘在三个不同的 N 分期模型中均有显着的影响性和相关性。
  
  参考文献

作者单位:吉林大学
原文出处:戚译天.直肠癌淋巴结转移的结外相关危险因素分析[D]. 吉林大学 2018
相关标签:
  • 报警平台
  • 网络监察
  • 备案信息
  • 举报中心
  • 传播文明
  • 诚信网站