四、蓬勃发展的中微子研究
中微子振荡是当前中微子研究的热点,但实际上中微子存在众多未解之谜,其他方面的研究也在蓬勃发展。
中微子振荡证明中微子有微小的质量,但具体数值仍然未知,正在通过贝塔衰变、无中微子双贝塔衰变,或者宇宙学测量等方法研究。根据已有的数据限制,估计最重的在0.1电子伏量级,与顶夸克差了12个数量级,最轻的仍不能排除为零。这带来了新的问题:它的质量也跟顶夸克一样,是由希格斯机制产生的吗?还是有新的产生机制?假如中微子是马约拉纳粒子,即它是自身的反粒子,那么现在流行的关于中微子质量产生的“跷跷板机制”能够比较自然地解释它为什么这么轻,但粒子物理的标准模型需要大的修改。
无中微子双贝塔实验是一类极为重要的中微子实验。如果发现了这种现象,则说明中微子与其他费米子都不同,是马约拉纳粒子。现在有十多个实验,利用不同的探测技术和不同的同位素进行研究,例如EXO、Gerda、CUORE、NEMO、Kam LAND-Zen、SNO+等。EXO是其中竞争力最强的实验之一。它利用液氙同时
作为双贝塔衰变核素和探测介质。目前EXO实验采用200千克液氙,计划升级为n EXO,靶质量为5吨,并继续提高探测器性能,特别是有可能实现独有的Ba离子标记技术,原则上可排除所有其他核素产生本底。假如中微子是反质量顺序,下一代的无中微子双贝塔实验将能在未来10年确定中微子是狄拉克粒子还是马约拉纳粒子。假如质量顺序是正序则情况比较糟,如果实验未有正结果,即使是下一代实验,也不能给出结论。
为了解释美国LSND实验20世纪90年代发现的极短距离的中微子振荡现象,有人认为存在着质量在1e V附近的中微子。由于加速器上粒子
衰变实验已经证明只有三种参与弱作用的粒子,只有两个独立的质量平方差,因此只能假定这种粒子不参与弱作用,称为“惰性中微子”.还有一些其他迹象支持惰性中微子的存在,如反应堆中微子反常和GELLEX反常。专门设计来验证LSND实验的Mini Boo NE实验也未能得到明确的结果。惰性中微子激起了相当一部分人的兴趣。新设计的实验包括距反应堆几米的地方测量中微子振荡、近距离的加速器中微子实验、利用放射源近距离测量中微子,等等。也许未来10年内能够解释这个谜团。
中微子也是一种新的天体物理的研究手段。它穿透能力强,是独一无二的研究天体内部的探针。中微子天文学刚刚兴起,将在太阳物理、地球物理、超新星爆发、宇宙起源、宇宙线起源等方面有较大发展。特别是南极洲的“冰立方”实验2013年发现了来自宇宙的极高能中微子,未来进一步升级后,有可能解决宇宙线起源的百年之谜。