¡¡¡¡Õª Òª£º¡¡ÊýѧÊdzõÖеĻù´¡ÐÔѧ¿Æ£¬ÒòÆä½Ï¸ßµÄÂ߼˼ά¡¢ÍÆÀíÓ¦ÓúͿռäÏëÏóÄÜÁ¦ÒªÇ󣬳ÉΪ³õÖÐÉúѧϰÖÐÄѶȽϸߵÄѧ¿Æ£¬³öÏ̶ֳȲ»Ò»µÄѧϰÕÏ°£¬Ò²ÏàÓ¦µØ²úÉúÁ˲¿·Ö³õÖÐÊýѧѧÀ§Éú¡£Ö»ÓпÆѧµØ̽¾¿Ôì³É³õÖÐÊýѧѧÀ§Éú²úÉúѧϰÕÏ°µÄÖ÷ÒªÔÒò£¬ÓÐÕë¶ÔÐԵطÖÎö½ÃÖÎѧÀ§ÉúѧϰÕÏ°µÄÓÐЧ¶Ô²ß£¬²ÅÄÜΪʵÏÖ¡°Ò»¸ö¶¼²»ÄÜÉÙ¡±¡¢ÈÃÿ¸ö³õÖÐÉú¶¼ÄÜÔÚÊýѧѧϰÖв»¶Ï½ø²½µÄ½ÌѧĿ±êµì¶¨¼áʵµÄ»ù´¡¡£
¡¡¡¡¹Ø¼ü´Ê : ³õÖÐÊýѧ;ѧÀ§Éú;ѧϰÕÏ°;½ÃÖζԲß;
¡¡¡¡Abstract£º¡¡Mathematics is a basic subject in junior middle school. Because of its requirements for logical thinking, reasoning and spatial imagination mathematics has become a difficult subject for some students, leading to their learning difficulties in different levels; and accordingly, these students become the so called difficult ones with mathematics. Only by scientifically analyzing the main causes of the mathematic learning barriers of these students and exploring the effective solutions to the difficulties, can a solid foundation be laid to realize the teaching goal of¡°no one falling behind¡±and enabling every student to make continuous progress in mathematics.
¡¡¡¡Keyword£º¡¡junior middle school mathematics; students with learning difficulties; learning obstacles; corrective measures;
¡¡¡¡¶ÔÓÚ³õÖÐÉú¶øÑÔ£¬Êýѧ¼ÈÊÇÖп¼ÉýѧÖÐÒ»Ãŷdz£ÖØÒªµÄѧ¿Æ£¬¸üÊÇÅàÑøѧÉúÂ߼˼ά¡¢³éÏó˼άÒÔ¼°Ì½¾¿Òâʶ¡¢¿ÆѧËØÑø²»¿É»òȱµÄ;¾¶¡£ÓÉÓÚ³õÖÐÉúÕý´¦ÓÚÐÄÀíºÍ˼ά·¢Õ¹µÄ³É³¤½×¶Î£¬Â߼˼άºÍ³éÏó˼άÄÜÁ¦Éв»ÍêÉÆ£¬Ðí¶àѧÉúÔÚѧϰÊýѧʱÄÑÃâ»áÓöµ½ÕâÑù»òÄÇÑùµÄÕÏ°£¬ÉõÖÁ³ÉΪ³õÖÐÊýѧѧÀ§Éú£¬¸ø³õÖÐÊýѧ½Ìѧ´øÀ´Öî¶àÀ§ÈÅ¡£³õÖÐÊýѧ½ÌʦҪ´ÓÊýѧѧ¿Æ֪ʶ½á¹¹¡¢Ñ§ÉúÄêÁäÐÄÀí¡¢Êýѧѧϰ¹æÂɵȷ½ÃæÈëÊÖ£¬Ì½ÌÖÔì³É³õÖÐÊýѧѧÀ§ÉúѧϰÕÏ°µÄÖ÷ÒªÔÒò£¬ÓÐÕë¶ÔÐԵطÖÎö½ÃÖÎѧÀ§ÉúѧϰÕÏ°µÄÓÐЧ¶Ô²ß[1]£¬ÒÔÆÚ¸ø³õÖÐÊýѧѧÀ§ÉúÊ©ÒÔ¶ÔÓ¦ÐԵĽÌѧºÍ¸¨µ¼·½·¨£¬ÈÃÿ¸öѧÉú¶¼ÄÜÔÚÊýѧѧϰÖÐÓÐËù½ø²½¡¢ÓÐËùÊÕ»ñ¡£
¡¡¡¡Ò»¡¢Ôì³É³õÖÐÊýѧѧÀ§ÉúѧϰÕÏ°µÄÖ÷ÒªÔÒò
¡¡¡¡Í¨¹ýÎʾíµ÷ÑС¢¸ö±ð·Ã̸ºÍ½Ìѧ¹Û²ì£¬ÎÒÃÇÃ÷È·Á˳õÖÐÊýѧѧÀ§Éú³öÏÖѧϰÕÏ°µÄÖ÷ÒªÔÒò¡£Ê×ÏÈ£¬ÊÇѧÉúµÄÊýѧ֪ʶ»ù´¡Ïà¶Ô±¡Èõ¡£ÔÚÒåÎñ½ÌÓý½×¶Î£¬Ð¡Ñ§Éý³õÖв»ÐèҪѡ°ÎÐÔ¿¼ÊÔ£¬Ê¹µÃ³õÖÐѧÉúµÄÊýѧѧϰ»ù´¡²Î²î²»Æë[2]¡£ÉýÈë³õÖкó£¬Êýѧ֪ʶµÄÉî¶ÈºÍ¹ã¶È½Ï֮СѧÓÐÁËÃ÷ÏÔ¼ÓÇ¿£¬Ô±¾ÔÚСѧ¾ÍÊýѧѧϰÀ§ÄÑ¡¢Ñ§Ï°»ù´¡±¡ÈõѧÉú£¬Ñ§Ï°³õÖÐÊýѧ¾Í¸üÏÔµÃÀ§ÄÑ¡£Æä´Î£¬Ã»ÓÐÕÆÎÕ¿ÆѧµÄÊýѧѧϰ·½·¨¡£¾ßÌå±íÏÖÔÚ£ºÃ»ÓкõÄѧϰϰ¹ß£¬¼È²»»á¿ªÕ¹±ØÒªµÄ¿ÎǰԤϰ£¬Ò²²»Ã÷°×¿ÎÉÏÓ¦Öصã×¢Òâ½Ìʦ½²µÄÄÄЩÄÚÈÝ£¬¸ü²»ÄÜ×ö³öϵͳµÄ¿Îºó¸´Ï°¹éÄÉ£¬ÖªÊ¶ÕÆÎÕ´ô°å¡¢½©»¯£¬Ë¼Î¬Â·¾¶ÏÁÕ¡£ÔٴΣ¬È±·¦¼áÈ͵ÄÊýѧѧϰÒãÁ¦¡£³õÖÐÊýѧѧϰ±ØÈ»»áÓöµ½Öî¶àµÄÀ§ÄѺʹìÕÛ£¬Õû¸ö³õÖÐÊýѧѧϰ¹ý³ÌÆäʵ¾ÍÊDz»¶Ï¿çÔ½À§ÄѺʹìÕ۵Ĺý³Ì[3]¡£³õÖÐÊýѧѧÀ§ÉúǡǡȱÉÙÓ¦¶ÔÀ§ÄѺʹìÕ۵ļáÈÍÒãÁ¦£¬»òÓöÄÑÔòÍË£¬»ò×Ô²Ñ×ÔÄÙ£¬»òÔÚ´ìÕÛÃæǰηËõ²»Ç°¡£×îºó£¬ÊǽÌʦµÄ½Ìѧ·½·¨ÓëѧÉúµÄÊýѧѧϰÐÄÀíºÍѧϰ¹æÂÉ´æÔÚ´íλ¡£²¿·Ö³õÖÐÊýѧ½Ìʦ½ÌѧÀíÄîÂäºó£¬½Ìѧ˼Ïë³Â¾É£¬²»ÄÜ´Ó³õÖÐÉúµÄÄêÁäÐÄÀíÐèÒªºÍÊýѧѧϰ¹æÂɳö·¢Éè¼Æ½Ìѧ»î¶¯£¬½ÌѧÊֶΡ¢½ÌѧģʽµÄÏȽøÐÔºÍÊÊÓ¦ÐÔÓëпγ̵ÄÒªÇóÏàÈ¥ÉõÔ¶¡£
¡¡¡¡¶þ¡¢½ÃÖγõÖÐÊýѧѧÀ§ÉúѧϰÕÏ°µÄÓÐЧ¶Ô²ß
¡¡¡¡£¨Ò»£©²»¶ÏÔúʵѧÉúµÄÊýѧѧϰ»ù´¡
¡¡¡¡½áºÏ³õÖÐÊýѧѧÀ§ÉúÊýѧѧϰ»ù´¡±¡ÈõµÄÏÖʵ£¬½ÌʦӦÔÚ½Ìѧ¹ý³ÌÖÐÃþÇåѧÀ§Éú¸÷²»ÏàͬµÄÊýѧѧϰ»ù´¡£¬°´ÕÕÒò²ÄÊ©½ÌµÄÔÔò£¬²ÉÈ¡Ç¡µ±µÄ½ÌѧºÍ¸¨µ¼´ëÊ©£¬²»¶ÏÔúʵѧÉúµÄÊýѧѧϰ»ù´¡[2]¡£ÀýÈ磬ÔÚѧϰ¡°ÓÐÀíÊýµÄÔËË㡱ʱ£¬»ùÓÚ´ËÄÚÈÝÓëСѧ¡°ËÄÔòÔËË㡱¹ØÁª½Ï´ó£¬Ò»Ð©Ñ§ÉúÒòΪ¶ÔСѧ¡°ËÄÔòÔËË㡱µÄ»ù´¡ÖªÊ¶ÕÆÎÕ²»ÀΣ¬Ó°ÏìÁ˶ԡ°ÓÐÀíÊýµÄÔËË㡱֪ʶµÄѧϰ£¬½ÌʦÔòÐèҪͨ¹ý±ØÒªµÄ¿Î³Ì¸´Ï°ºÍ²¹Ï°£¬ÔڻعËСѧ¡°ËÄÔòÔËË㡱µÄÇ°ÌáÏÂÂäʵ¡°ÓÐÀíÊýµÄÔËË㡱µÄ½ÌѧĿ±ê£¬´Ó¶øΪѧÉú½¨Á¢ÆðÔúʵµÄÊýѧѧϰ»ù´¡£¬±£ÕϳõÖÐÊýѧпεÄÓÐЧ½ÌѧЧ¹û¡£
¡¡¡¡£¨¶þ£©Ö¸µ¼Ñ§ÉúÕÆÎÕ¿ÆѧµÄÊýѧѧϰ·½·¨
¡¡¡¡Ð¿γ̽«±ä¸ïѧÉúµÄѧϰ·½·¨£¬ÒýÁìѧÉúÔÚ×ÔÖ÷¡¢ºÏ×÷¡¢Ì½¾¿ÖÐÕÆÎÕ֪ʶ¡¢ÆôµÏ˼ά¡¢ÅàÑøÄÜÁ¦×÷Ϊ½Ìʦ½ÌѧµÄÖØҪĿ±ê[3]¡£³õÖÐÊýѧ½ÌʦҪ»ý¼«¼ùÐÐпγÌÀíÄָµ¼Ñ§ÉúÕÆÎÕ¿ÆѧµÄÊýѧѧϰ·½·¨¡£Ê×ÏÈ£¬Òª¸øѧÉúÌṩµ¼Ñ§°¸£¬Ö¸µ¼Ñ§Éú½áºÏµ¼Ñ§°¸Ñ§»á¿ÎǰԤϰ£¬ÔÚԤϰÖÐѧ»á×ÔÖ÷ѧϰ¡£Æä´Î£¬ÒªÔÚ¿ÎÌÃÖнáºÏ½ÌѧÖص㡢Äѵ㣬ÒÔÎÊÌâÐÎʽ×é֯ѧÉúºÏ×÷̽¾¿£¬ÈÃѧÉúÔÚºÏ×÷̽¾¿ÖÐ×ÔÖ÷µØ·¢ÏÖ֪ʶ£¬¹¹½¨½ÏΪÍêÕûµÄÊýѧ֪ʶÌåϵ¡£×îºó£¬ÒªÖ¸µ¼Ñ§Éúѧ»á¿Îºó×ܽá¹éÄÉ֪ʶ£¬Í¨¹ýÏÖ´úÐÅÏ¢¼¼Êõ·´À¡¸´Ï°ÖвúÉúµÄÒÉ»ó£¬ÔÚ½ÌʦµÄ¼°Ê±½â´ðÖÐÏû³ýÒÉ»ó£¬Íê³ÉÊýѧѧϰÄÜÁ¦µÄÅàÑøºÍÌá¸ß¡£
¡¡¡¡£¨Èý£©ÅàÑøѧÉú¼áÈ͵ÄѧϰÒãÁ¦
¡¡¡¡Ñ§ÉúÊdzõÖÐÊýѧѧϰµÄÖ÷Ì壬ѧÉúµÄÄÚÉú¶¯Á¦ÊÇ¿Ë·þÊýѧѧϰÕÏ°µÄ¹Ø¼ü¡£³õÖÐÊýѧ½ÌʦҪ½ôÃܽáºÏѧÀ§ÉúµÄÐÄÀíÇé¸ÐÐèÒª£¬°ÑÅàÑøѧÉú¼áÈ͵ÄѧϰÒãÁ¦·Åµ½Êýѧ½ÌѧµÄºËÐÄλÖÃ[1]¡£µÚÒ»£¬Òª×öºÃѧÀ§ÉúµÄ˼ÏëÒýµ¼£¬°ïÖúѧÀ§Éú½¨Á¢¹¥¼á¿ËÄѵÄ˼Ïë»ù´¡¡£µÚ¶þ£¬×é֯ѧϰÓÅÐãµÄѧÉúÓëѧÀ§Éú½á³É°ï·ö¶Ô×Ó£¬ÒÔ°ñÑùµÄÁ¦Á¿¹ÄÎèѧÀ§Éú¡£µÚÈý£¬ÔÚѧÀ§ÉúÓöµ½Ñ§Ï°À§ÄÑʱ¼°Ê±¸øÓèÕë¶ÔÐԵĸ¨µ¼£¬ÎªÑ§Éú´´ÔìÖð²½½ø²½µÄ»ú»á¡£µÚËÄ£¬ÔÚѧÀ§ÉúÈ¡µÃѧϰ½ø²½Ê±£¬ÒÔ¹ÄÀøÐÔµÄÆÀ¼ÛÈÃѧÀ§Éú¸ÐÊܳɹ¦µÄϲÔã¬ÌáÉýѧÉúµÄѧϰ×ÔÐÅÐÄ¡£
¡¡¡¡£¨ËÄ£©×ñÑѧÉúµÄÊýѧѧϰÐÄÀíºÍѧϰ¹æÂÉ
¡¡¡¡¸ù¾Ýпγ̵ÄÒªÇ󣬽ÌʦÔÚ³õÖÐÊýѧ½ÌѧÖÐҪʱ¿Ì×ñÑѧÉúµÄÊýѧѧϰÐÄÀíºÍѧϰ¹æÂÉ£¬ÒÔ¼¤·¢Ñ§À§ÉúµÄÊýѧѧϰÐËȤΪÁ¢×ãµã£¬´´Ð½Ìѧ·½Ê½·½·¨£¬¸ßЧµØÒýµ¼Ñ§À§ÉúÍ»ÆÆÊýѧѧϰÕÏ°[2]¡£ÀýÈ磬½Ìѧ¡°¶þ´Îº¯Êý¼°ÆäͼÏñ¡±Ê±£¬½áºÏ±¾½ÚÄÚÈݱȽϳéÏó¡¢Ñ§ÉúÀí½âÆðÀ´ÓÐÒ»¶¨ÕÏ°µÄÏÖʵ£¬½ÌʦӦÀûÓÃ΢¿Î£¬Ê¹y=x2¡¢y=x2-1¡¢y=(x-1)2ºÍy=-x2¡¢y=-x2+1¡¢y=-(x-1)2µÄͼÏñÒÔ¶¯Ì¬µÄ·½Ê½Öð´Îչʾ£¬ÔÚͼÏñ¶Ô±ÈºÍ±ä»»Öн¨Á¢±Ë´Ë¼äµÄÁªÏµ£¬·¢ÏÖ²îÒ죬ÔÚµ÷¶¯Ñ§Éú¸ß¶ÈÐ˷ܵĻù´¡ÉÏ»¯½â½ÌѧÄѵ㣬ÆƳýѧϰÕÏ°£¬´Ù½øѧÀ§ÉúµÄÐÂ֪ѧϰ¡£
¡¡¡¡Ç¿»¯³õÖÐÊýѧѧÀ§ÉúѧϰÕÏ°¼°½ÃÖζԲߵķÖÎö£¬¼ÈÊǼùÐÐпγÌÀíÄî¡¢ÓÅ»¯½Ìѧ½á¹¹µÄÐèÒª£¬¸üÊÇÂäʵÒÔѧÉúΪ±¾¡¢Í¹ÏÔΪÁËÿ¸öѧÉúѧÓÐËùµÃ½ÌѧÔÔòµÄÄÚÔÚÌåÏÖ¡£³õÖÐÊýѧ½ÌʦҪÒÔпγÌÀíÄîΪָµ¼£¬¹ØעѧÀ§Éú£¬Ñо¿Ñ§À§Éú£¬°ÑÒýÁìѧÉú¿Ë·þѧϰÕÏ°×÷Ϊת»¯Ñ§À§ÉúµÄÁ¢×ãµã£¬½ø¶øÈ«ÃæÂäʵ¡°Ò»¸ö¶¼²»ÄÜÉÙ¡±¡¢ÈÃÿ¸ö³õÖÐÉú¶¼ÄÜÔÚÊýѧѧϰÖв»¶Ï½ø²½µÄÒªÇó¡£
¡¡¡¡²Î¿¼ÎÄÏ×
¡¡¡¡[1]ÁõÊ¿Áá³õÖÐÊýѧѧÒòÉúѧϰÕÏ°³ÉÒò¼°Æƽⷽ·¨[J]ÇóÖªµ¼¿¯,2020(9): 123-124.
¡¡¡¡[2]ºÎÃ÷Ë®¹ØÓÚ³õÖÐÊýѧѧÒòÉú³ÉÒò·ÖÎö¼°¶Ô²ß̽¾¿[J].¿Î³Ì½ÌѧÑо¿,2020(10):63-64.
¡¡¡¡[3]³ÂÁ¦Î°¶Ô³õÖÐÊýѧѧÒòÉúת»¯µÄÑо¿ºÍʵ¼ù[J].ÎÄÀíµ¼º½, 2021(4)-:101-102.