¡¡¡¡Õª Òª£º¡¡ÊýѧÊdzõÖеĻù´¡ÐÔѧ¿Æ£¬ÒòÆä½Ï¸ßµÄÂ߼˼ά¡¢ÍÆÀíÓ¦ÓúͿռäÏëÏóÄÜÁ¦ÒªÇ󣬳ÉΪ³õÖÐÉúѧϰÖÐÄѶȽϸߵÄѧ¿Æ£¬³öÏ̶ֳȲ»Ò»µÄѧϰÕϰ£¬Ò²ÏàÓ¦µØ²úÉúÁ˲¿·Ö³õÖÐÊýѧѧÀ§Éú¡£Ö»ÓпÆÑ§µØÌ½¾¿Ôì³É³õÖÐÊýѧѧÀ§Éú²úÉúѧϰÕϰµÄÖ÷ÒªÔÒò£¬ÓÐÕë¶ÔÐԵطÖÎö½ÃÖÎѧÀ§ÉúѧϰÕϰµÄÓÐЧ¶Ô²ß£¬²ÅÄÜΪʵÏÖ¡°Ò»¸ö¶¼²»ÄÜÉÙ¡±¡¢ÈÃÿ¸ö³õÖÐÉú¶¼ÄÜÔÚÊýѧѧϰÖв»¶Ï½ø²½µÄ½ÌѧĿ±êµì¶¨¼áʵµÄ»ù´¡¡£
¡¡¡¡¹Ø¼ü´Ê : ³õÖÐÊýѧ;ѧÀ§Éú;ѧϰÕϰ;½ÃÖζԲß;
¡¡¡¡Abstract£º¡¡Mathematics is a basic subject in junior middle school. Because of its requirements for logical thinking, reasoning and spatial imagination mathematics has become a difficult subject for some students, leading to their learning difficulties in different levels; and accordingly, these students become the so called difficult ones with mathematics. Only by scientifically analyzing the main causes of the mathematic learning barriers of these students and exploring the effective solutions to the difficulties, can a solid foundation be laid to realize the teaching goal of¡°no one falling behind¡±and enabling every student to make continuous progress in mathematics.
¡¡¡¡Keyword£º¡¡junior middle school mathematics; students with learning difficulties; learning obstacles; corrective measures;
¡¡¡¡¶ÔÓÚ³õÖÐÉú¶øÑÔ£¬Êýѧ¼ÈÊÇÖп¼ÉýѧÖÐÒ»Ãŷdz£ÖØÒªµÄѧ¿Æ£¬¸üÊÇÅàÑøÑ§ÉúÂ߼˼ά¡¢³éÏó˼άÒÔ¼°Ì½¾¿Òâʶ¡¢¿ÆÑ§ËØÑø²»¿É»òȱµÄ;¾¶¡£ÓÉÓÚ³õÖÐÉúÕý´¦ÓÚÐÄÀíºÍ˼ά·¢Õ¹µÄ³É³¤½×¶Î£¬Â߼˼άºÍ³éÏó˼άÄÜÁ¦Éв»ÍêÉÆ£¬Ðí¶àѧÉúÔÚѧϰÊýѧʱÄÑÃâ»áÓöµ½ÕâÑù»òÄÇÑùµÄÕϰ£¬ÉõÖÁ³ÉΪ³õÖÐÊýѧѧÀ§Éú£¬¸ø³õÖÐÊýѧ½Ìѧ´øÀ´Öî¶àÀ§ÈÅ¡£³õÖÐÊýѧ½ÌʦҪ´ÓÊýѧѧ¿ÆÖªÊ¶½á¹¹¡¢Ñ§ÉúÄêÁäÐÄÀí¡¢Êýѧѧϰ¹æÂɵȷ½ÃæÈëÊÖ£¬Ì½ÌÖÔì³É³õÖÐÊýѧѧÀ§ÉúѧϰÕϰµÄÖ÷ÒªÔÒò£¬ÓÐÕë¶ÔÐԵطÖÎö½ÃÖÎѧÀ§ÉúѧϰÕϰµÄÓÐЧ¶Ô²ß[1]£¬ÒÔÆÚ¸ø³õÖÐÊýѧѧÀ§ÉúÊ©ÒÔ¶ÔÓ¦ÐԵĽÌѧºÍ¸¨µ¼·½·¨£¬ÈÃÿ¸öѧÉú¶¼ÄÜÔÚÊýѧѧϰÖÐÓÐËù½ø²½¡¢ÓÐËùÊÕ»ñ¡£
¡¡¡¡Ò»¡¢Ôì³É³õÖÐÊýѧѧÀ§ÉúѧϰÕϰµÄÖ÷ÒªÔÒò
¡¡¡¡Í¨¹ýÎʾíµ÷ÑС¢¸ö±ð·Ã̸ºÍ½Ìѧ¹Û²ì£¬ÎÒÃÇÃ÷È·Á˳õÖÐÊýѧѧÀ§Éú³öÏÖѧϰÕϰµÄÖ÷ÒªÔÒò¡£Ê×ÏÈ£¬ÊÇѧÉúµÄÊýѧ֪ʶ»ù´¡Ïà¶Ô±¡Èõ¡£ÔÚÒåÎñ½ÌÓý½×¶Î£¬Ð¡Ñ§Éý³õÖв»ÐèҪѡ°ÎÐÔ¿¼ÊÔ£¬Ê¹µÃ³õÖÐѧÉúµÄÊýѧѧϰ»ù´¡²Î²î²»Æë[2]¡£ÉýÈë³õÖкó£¬Êýѧ֪ʶµÄÉî¶ÈºÍ¹ã¶È½Ï֮СѧÓÐÁËÃ÷ÏÔ¼ÓÇ¿£¬Ô±¾ÔÚСѧ¾ÍÊýѧѧϰÀ§ÄÑ¡¢Ñ§Ï°»ù´¡±¡ÈõѧÉú£¬Ñ§Ï°³õÖÐÊýѧ¾Í¸üÏÔµÃÀ§ÄÑ¡£Æä´Î£¬Ã»ÓÐÕÆÎÕ¿ÆÑ§µÄÊýѧѧϰ·½·¨¡£¾ßÌå±íÏÖÔÚ£ºÃ»ÓкõÄѧϰϰ¹ß£¬¼È²»»á¿ªÕ¹±ØÒªµÄ¿ÎǰԤϰ£¬Ò²²»Ã÷°×¿ÎÉÏÓ¦ÖØµã×¢Òâ½Ìʦ½²µÄÄÄЩÄÚÈÝ£¬¸ü²»ÄÜ×ö³öϵͳµÄ¿Îºó¸´Ï°¹éÄÉ£¬ÖªÊ¶ÕÆÎÕ´ô°å¡¢½©»¯£¬Ë¼Î¬Â·¾¶ÏÁÕ¡£ÔٴΣ¬È±·¦¼áÈ͵ÄÊýѧѧϰÒãÁ¦¡£³õÖÐÊýѧѧϰ±ØÈ»»áÓöµ½Öî¶àµÄÀ§ÄѺʹìÕÛ£¬Õû¸ö³õÖÐÊýѧѧϰ¹ý³ÌÆäʵ¾ÍÊDz»¶Ï¿çÔ½À§ÄѺʹìÕ۵Ĺý³Ì[3]¡£³õÖÐÊýѧѧÀ§ÉúǡǡȱÉÙÓ¦¶ÔÀ§ÄѺʹìÕ۵ļáÈÍÒãÁ¦£¬»òÓöÄÑÔòÍË£¬»ò×Ô²Ñ×ÔÄÙ£¬»òÔÚ´ìÕÛÃæÇ°Î·Ëõ²»Ç°¡£×îºó£¬ÊǽÌʦµÄ½Ìѧ·½·¨ÓëѧÉúµÄÊýѧѧϰÐÄÀíºÍѧϰ¹æÂÉ´æÔÚ´íλ¡£²¿·Ö³õÖÐÊýѧ½Ìʦ½ÌѧÀíÄîÂäºó£¬½Ìѧ˼Ïë³Â¾É£¬²»ÄÜ´Ó³õÖÐÉúµÄÄêÁäÐÄÀíÐèÒªºÍÊýѧѧϰ¹æÂɳö·¢Éè¼Æ½Ìѧ»î¶¯£¬½ÌѧÊֶΡ¢½ÌѧģʽµÄÏȽøÐÔºÍÊÊÓ¦ÐÔÓëпγ̵ÄÒªÇóÏàÈ¥ÉõÔ¶¡£
¡¡¡¡¶þ¡¢½ÃÖγõÖÐÊýѧѧÀ§ÉúѧϰÕϰµÄÓÐЧ¶Ô²ß
¡¡¡¡£¨Ò»£©²»¶ÏÔúʵѧÉúµÄÊýѧѧϰ»ù´¡
¡¡¡¡½áºÏ³õÖÐÊýѧѧÀ§ÉúÊýѧѧϰ»ù´¡±¡ÈõµÄÏÖʵ£¬½ÌʦӦÔÚ½Ìѧ¹ý³ÌÖÐÃþÇåѧÀ§Éú¸÷²»ÏàͬµÄÊýѧѧϰ»ù´¡£¬°´ÕÕÒò²ÄÊ©½ÌµÄÔÔò£¬²Éȡǡµ±µÄ½ÌѧºÍ¸¨µ¼´ëÊ©£¬²»¶ÏÔúʵѧÉúµÄÊýѧѧϰ»ù´¡[2]¡£ÀýÈ磬ÔÚѧϰ¡°ÓÐÀíÊýµÄÔËË㡱ʱ£¬»ùÓÚ´ËÄÚÈÝÓëСѧ¡°ËÄÔòÔËË㡱¹ØÁª½Ï´ó£¬Ò»Ð©Ñ§ÉúÒòΪ¶ÔСѧ¡°ËÄÔòÔËË㡱µÄ»ù´¡ÖªÊ¶ÕÆÎÕ²»ÀΣ¬Ó°ÏìÁ˶ԡ°ÓÐÀíÊýµÄÔËË㡱֪ʶµÄѧϰ£¬½ÌʦÔòÐèҪͨ¹ý±ØÒªµÄ¿Î³Ì¸´Ï°ºÍ²¹Ï°£¬ÔڻعËСѧ¡°ËÄÔòÔËË㡱µÄǰÌáÏÂÂäʵ¡°ÓÐÀíÊýµÄÔËË㡱µÄ½ÌѧĿ±ê£¬´Ó¶øÎªÑ§Éú½¨Á¢ÆðÔúʵµÄÊýѧѧϰ»ù´¡£¬±£ÕϳõÖÐÊýѧпεÄÓÐЧ½ÌѧЧ¹û¡£
¡¡¡¡£¨¶þ£©Ö¸µ¼Ñ§ÉúÕÆÎÕ¿ÆÑ§µÄÊýѧѧϰ·½·¨
¡¡¡¡Ð¿γ̽«±ä¸ïѧÉúµÄѧϰ·½·¨£¬ÒýÁìѧÉúÔÚ×ÔÖ÷¡¢ºÏ×÷¡¢Ì½¾¿ÖÐÕÆÎÕ֪ʶ¡¢ÆôµÏ˼ά¡¢ÅàÑøÄÜÁ¦×÷Ϊ½Ìʦ½ÌѧµÄÖØÒªÄ¿±ê[3]¡£³õÖÐÊýѧ½ÌʦҪ»ý¼«¼ùÐÐпγÌÀíÄָµ¼Ñ§ÉúÕÆÎÕ¿ÆÑ§µÄÊýѧѧϰ·½·¨¡£Ê×ÏÈ£¬Òª¸øÑ§ÉúÌṩµ¼Ñ§°¸£¬Ö¸µ¼Ñ§Éú½áºÏµ¼Ñ§°¸Ñ§»á¿ÎǰԤϰ£¬ÔÚԤϰÖÐѧ»á×ÔÖ÷ѧϰ¡£Æä´Î£¬ÒªÔÚ¿ÎÌÃÖнáºÏ½ÌÑ§ÖØµã¡¢Äѵ㣬ÒÔÎÊÌâÐÎʽ×é֯ѧÉúºÏ×÷̽¾¿£¬ÈÃѧÉúÔÚºÏ×÷̽¾¿ÖÐ×ÔÖ÷µØ·¢ÏÖ֪ʶ£¬¹¹½¨½ÏΪÍêÕûµÄÊýѧ֪ʶÌåϵ¡£×îºó£¬ÒªÖ¸µ¼Ñ§Éúѧ»á¿Îºó×ܽá¹éÄÉ֪ʶ£¬Í¨¹ýÏÖ´úÐÅÏ¢¼¼Êõ·´À¡¸´Ï°ÖвúÉúµÄÒÉ»ó£¬ÔÚ½ÌʦµÄ¼°Ê±½â´ðÖÐÏû³ýÒÉ»ó£¬Íê³ÉÊýѧѧϰÄÜÁ¦µÄÅàÑøºÍÌá¸ß¡£
¡¡¡¡£¨Èý£©ÅàÑøÑ§Éú¼áÈ͵ÄѧϰÒãÁ¦
¡¡¡¡Ñ§ÉúÊdzõÖÐÊýѧѧϰµÄÖ÷Ì壬ѧÉúµÄÄÚÉú¶¯Á¦Êǿ˷þÊýѧѧϰÕϰµÄ¹Ø¼ü¡£³õÖÐÊýѧ½ÌʦҪ½ôÃܽáºÏѧÀ§ÉúµÄÐÄÀíÇé¸ÐÐèÒª£¬°ÑÅàÑøÑ§Éú¼áÈ͵ÄѧϰÒãÁ¦·Åµ½Êýѧ½ÌѧµÄºËÐÄλÖÃ[1]¡£µÚÒ»£¬Òª×öºÃѧÀ§ÉúµÄ˼ÏëÒýµ¼£¬°ïÖúѧÀ§Éú½¨Á¢¹¥¼á¿ËÄѵÄ˼Ïë»ù´¡¡£µÚ¶þ£¬×é֯ѧϰÓÅÐãµÄѧÉúÓëѧÀ§Éú½á³É°ï·ö¶Ô×Ó£¬ÒÔ°ñÑùµÄÁ¦Á¿¹ÄÎèѧÀ§Éú¡£µÚÈý£¬ÔÚѧÀ§ÉúÓöµ½Ñ§Ï°À§ÄÑʱ¼°Ê±¸øÓèÕë¶ÔÐԵĸ¨µ¼£¬ÎªÑ§Éú´´ÔìÖð²½½ø²½µÄ»ú»á¡£µÚËÄ£¬ÔÚѧÀ§ÉúÈ¡µÃѧϰ½ø²½Ê±£¬ÒÔ¹ÄÀøÐÔµÄÆÀ¼ÛÈÃѧÀ§Éú¸ÐÊܳɹ¦µÄϲÔã¬ÌáÉýѧÉúµÄѧϰ×ÔÐÅÐÄ¡£
¡¡¡¡£¨ËÄ£©×ñÑѧÉúµÄÊýѧѧϰÐÄÀíºÍѧϰ¹æÂÉ
¡¡¡¡¸ù¾Ýпγ̵ÄÒªÇ󣬽ÌʦÔÚ³õÖÐÊýѧ½ÌѧÖÐҪʱ¿Ì×ñÑѧÉúµÄÊýѧѧϰÐÄÀíºÍѧϰ¹æÂÉ£¬ÒÔ¼¤·¢Ñ§À§ÉúµÄÊýѧѧϰÐËȤΪÁ¢×ãµã£¬´´Ð½Ìѧ·½Ê½·½·¨£¬¸ßЧµØÒýµ¼Ñ§À§ÉúÍ»ÆÆÊýѧѧϰÕϰ[2]¡£ÀýÈ磬½Ìѧ¡°¶þ´Îº¯Êý¼°ÆäͼÏñ¡±Ê±£¬½áºÏ±¾½ÚÄÚÈݱȽϳéÏó¡¢Ñ§ÉúÀí½âÆðÀ´ÓÐÒ»¶¨ÕϰµÄÏÖʵ£¬½ÌʦӦÀûÓÃ΢¿Î£¬Ê¹y=x2¡¢y=x2-1¡¢y=(x-1)2ºÍy=-x2¡¢y=-x2+1¡¢y=-(x-1)2µÄͼÏñÒÔ¶¯Ì¬µÄ·½Ê½Öð´Îչʾ£¬ÔÚͼÏñ¶Ô±ÈºÍ±ä»»Öн¨Á¢±Ë´Ë¼äµÄÁªÏµ£¬·¢ÏÖ²îÒ죬ÔÚµ÷¶¯Ñ§Éú¸ß¶ÈÐ˷ܵĻù´¡ÉÏ»¯½â½ÌѧÄÑµã£¬ÆÆ³ýѧϰÕϰ£¬´Ù½øÑ§À§ÉúµÄÐÂ֪ѧϰ¡£
¡¡¡¡Ç¿»¯³õÖÐÊýѧѧÀ§ÉúѧϰÕϰ¼°½ÃÖζԲߵķÖÎö£¬¼ÈÊǼùÐÐпγÌÀíÄî¡¢ÓÅ»¯½Ìѧ½á¹¹µÄÐèÒª£¬¸üÊÇÂäʵÒÔѧÉúΪ±¾¡¢Í¹ÏÔΪÁËÿ¸öѧÉúѧÓÐËùµÃ½ÌѧÔÔòµÄÄÚÔÚÌåÏÖ¡£³õÖÐÊýѧ½ÌʦҪÒÔпγÌÀíÄîΪָµ¼£¬¹Ø×¢Ñ§À§Éú£¬Ñо¿Ñ§À§Éú£¬°ÑÒýÁìѧÉú¿Ë·þѧϰÕϰ×÷Ϊת»¯Ñ§À§ÉúµÄÁ¢×ãµã£¬½ø¶øÈ«ÃæÂäʵ¡°Ò»¸ö¶¼²»ÄÜÉÙ¡±¡¢ÈÃÿ¸ö³õÖÐÉú¶¼ÄÜÔÚÊýѧѧϰÖв»¶Ï½ø²½µÄÒªÇó¡£
¡¡¡¡²Î¿¼ÎÄÏ×
¡¡¡¡[1]ÁõÊ¿Áá³õÖÐÊýѧѧÒòÉúѧϰÕϰ³ÉÒò¼°ÆÆ½â·½·¨[J]ÇóÖªµ¼¿¯,2020(9): 123-124.
¡¡¡¡[2]ºÎÃ÷Ë®¹ØÓÚ³õÖÐÊýѧѧÒòÉú³ÉÒò·ÖÎö¼°¶Ô²ß̽¾¿[J].¿Î³Ì½ÌѧÑо¿,2020(10):63-64.
¡¡¡¡[3]³ÂÁ¦Î°¶Ô³õÖÐÊýѧѧÒòÉúת»¯µÄÑо¿ºÍʵ¼ù[J].ÎÄÀíµ¼º½, 2021(4)-:101-102.