0引言
随着智能配电网建设的开展,科研、生产、建设和运行管理部门齐心协力,共同推动了配电自动化技术 进 步。文 献 [1]较 早 阐 述 了 配 电 管 理 系 统(DMS)及其应用功能,具有指导意义;文献[2]对第1轮配电自动化系统建设经验进行总结,并提出了新一代配电网管理平台的理念;文献[3]探讨了基于IEC 61968配电业务系统集成方式。国家电网公司对智能配电系列标准规范重新进行了修订[4-5],对有效指导配电自动化建设发挥了重要作用;在第2轮配电自动化系统试点建设完成之后,文献[5-7]对试点工作进行了总结。虽然配电自动化建设取得了长足的进展,其技术支撑手段及应用效果仍需完善提高,具体分析如下。
1)技术支撑手段尚不足以满足业务需求。按照电网公司“大运行”体系全面建设方案的要求,地县级调度机构将全面负责配电网运行与监控、故障研判及抢修指挥业务。面对地县级调度机构业务的变更,需要研究适合配电网调度控制与抢修一体化建设的软件架构,实现两大业务资源的最优整合及有效互动。
2)系统标准化程度和信息交互的一致性、规范性有待细化完善。国家电网公司正在大力推进生产管理、营销业务、配电自动化等各业务系统的标准化工作,但从应用层面上,数据、模型、图形的一致性和规范性尚需提高。为了支撑配电网调度及抢修业务,需要研究信息集成技术,实现数据的高度共享及业务协同。
3)基础应用功能实用化水平需要提高。由于资金、通信方式、技术水平、系统运维等方面条件的限制,配电网通信质量相对较低,实时数据的准确性和实效性不能完全保证,存在信号误报、漏报和晚报的情况,对馈线自动化等应用功能的容错性要求较高。
4)配电网应用分析软件适应性不强。目前实现信息采集的配电线路仅占总量的15%,实时数据采集覆盖率较低,需要研究改善及弥补配电网量测数量、质量不高的手段;另外国内配电网应用分析软件算法多移植自调度自动化系统,未能充分考虑到量测信息的冗余性不足、配电网线路和用户负荷特性与主网的差异,无法适应配电自动化系统的要求。
5)系统对新能源接入适应能力需要加强。随着国家新能源政策的实施,分布式电源/微网/电动汽车接入配电网逐步增多,对配电网短路电流、继电保护、电压控制、负荷分配等功能提出了更高要求。现有自动化系统应用功能主要针对传统的单向能量流的模式设计,而对大量分布式电源接入后双向能量流的模式考虑不足。
综上所述,目前的配电网调度控制技术支撑手段尚无法完全满足调度运行及故障抢修业务的需要,需要加快配电网调度控制系统及技术手段研究。
本文旨在探索新一代配电网调度控制系统建设思路,介绍系统建设的体系架构及其相关技术,并针对配电网量测不全、应用功能实用化程度不高、新能源接入等一系列问题,探讨推进配电网数据采集与监控(SCADA)、馈线自动化等应用功能实用化的关键技术。
1系统建设总体方案
1.1总体架构
配电网调度控制系统基于新一代智能电网调度控制系统基础平台(简称“D5000平台”),在安全Ⅰ区实现图模管理、实时监控、拓扑分析、馈线自动化和分析应用等配电网调度控制功能;在安全Ⅲ区实现报修工单管理、计划停电分析、故障研判、统计分析和综合展示等配电网抢修指挥功能。系统总体架构如图1所示,图中Ⅳ区信息平台(电网GIS平台)是含GIS信息的集成平台;PMS表示生产管理系统。系统充分利用平台先进的服务总线、消息总线、数据总线、资源管理、软硬件管理等手段实现Ⅰ区、Ⅲ区信息高效传输、共享以及业务协同。根据国家电网公司调度控制机构设置和业务的需求,系统在地(县)公司分布式建设。
1.2配电网调度控制与故障抢修一体化技术
配电网调度控制与故障抢修(简称“配抢”)一体化技术关键是如何实现安全Ⅰ区和Ⅲ区资源存储、业务处理分区负责,通过平台数据总线实现信息的高效传输、共享以及业务协同,从而减少系统容量、运维压力、管理复杂度,提升故障处理效率。重点技术是Ⅰ区、Ⅲ区一体化协同建模及配电网运行监控与抢修协同作业技术。
1.2.1一体化建模技术
为了支撑配电网调度控制系统业务的开展,系统需要统一构建配电网高、中、低压全网拓扑模型。高压模型来自于调度控制系统,通过公共信息模型XML格式(CIM/XML)或电网通用模型描述规范格式(CIM/E)的数据文件进行信息接入;中、低压模型多来自于电网GIS平台,通过CIM/XML的数据文件进行信息接入,一体化建模软件提供中压模型和高压模型的拼接功能。作为弥补手段,系统也提供了图库一体化方式的自行建模。考虑到低压数据量较大和Ⅰ区、Ⅲ区业务需求,Ⅰ区存储高、中压模型,Ⅲ区存储高压、中压、低压模型,平台数据库软件负责模型同步。
1.2.2配电网运行监控与抢修协同作业
考虑到Ⅰ区、Ⅲ区资源分布情况、业务重点等因素,配抢一体化系统业务协同的总体思路是安全Ⅰ区重点基于中压设备开展应用分析,而安全Ⅲ区重点围绕低压用户开展应用分析。
1)全网拓扑分析应用协同:基于全网模型及实时采集数据的拓扑分析是配电网调度控制系统的基础核心应用。全网拓扑分析需Ⅰ区、Ⅲ区协同分析,Ⅰ区负责进线开关至配电变压器的拓扑分析,而Ⅲ区负责配电变压器至用户的拓扑分析,Ⅰ区、Ⅲ区相互交换分析结果,最终形成基于全网模型及实时数据的全网拓扑分析,支撑中压停电分析及低压用户报修研判等业务。
2)中压故障协同处理:
Ⅰ区收集故障指示信号以及进线开关重合闸、智能断路器跳闸事件,根据配电网模型和信号进行拓扑分析,将故障定位在一个封闭区域内,并进行故障隔离及非故障区段转供,同时将该故障区段信息传送至Ⅲ区配电网故障抢修调度系统,停电研判模块根据中低压一体化电网模型,利用用电信息召测和拓扑分析等手段分析停电设备、停电用户、停电区域空间信息,辅助抢修指挥决策。
3)供电可靠性分析:为了更好地开展Ⅰ区负荷转供、检修计划、非故障区段恢复供电及Ⅲ区故障抢修优先级分析等业务,均需依靠供电可靠性分析。
供电可靠性分析从负荷损失、保供电用、重要用户、停电用户数、用户停电频度等多维度进行综合分析,停电可靠性分析的负荷损失情况分析源自安全Ⅰ区,而其他分析源自安全Ⅲ区,综合分析结果支撑负荷转供、抢修、负荷削减等业务开展。
1.3信息集成技术
实现一个功能完整的配电网调度控制系统,需要与调度控制系统、GIS、用电信息采集、营销管理、95598、PMS等多个系统集成。国家电网公司近期重点开展了配电自动化信息交互研究工作,同步开展了标准的制定工作和互操作实验,信息交互的标准包括:配电自动化信息交互技术规范、配电自动化信息交换总线功能规范、配电自动化信息交互一致性测试规范、配电自动化信息交互技术规范、配电自动化信息交换总线功能规范,标准内容涉及了信息交互的业务流程、信息接口、模型数据一致性表达、总线功 能、互操作验证等,并 取得了 阶段性的成果[8]。
图1中Ⅲ区的信息平台(含GIS)是一个基于面向服务架构(SOA)、遵循IEC 61970/IEC 61968接口规范、具有良好可扩充性的数据集成平台。信息平台的两大核心功能是电网信息资源整合和信息服务。平台收集各配电网业务系统的电网信息,进行资源整合,形成遵循IEC 61968/IEC 61970的配电网高(简化)、中、低压的CIM。电网信息资源是对配电网各类电网设备、设施及用户等资源信息的统称,包括:地理信息,电气设备的铭牌、参数和拓扑信息,电力设施的台账信息等,还包括相应的各类图形资源信息(地理接线图、电网专题图等)。平台提供完备的信息服务接口,基于消息传输机制,为配电系统间的信息共享、业务流转和功能集成提供支持,实现系统间模型、实时/准实时信息和历史信息的交互。
配电网调度控制系统作为信息平台支撑的一个配电业务系统,通过平台接口服务获取相关信息,为平台提供调度控制信息支持,参与配电网相关业务流转,信息交互内容包括以下几个方面。
1)参与配电设备变更流程。接受配电网CIM及其电网图形变更信息;完成调度审核流程;建立内部电网模型,确保维护模型的一致性、准确性、及时性。
2)发布包含人工操作标识的电网准实时断面信息。
3)提供各类电网历史数据查询接口服务,返回设备带时间标签、质量码的历史数据。
4)参与配抢业务信息流转,发布信息包括:高、中、低压故障研判结果;抢修工单。接受信息包括:用户报修、抢修进度反馈,电量召测结果等。
5)利用平台提供带有地理矢量、影像背景的电网地理图接口服务,实现配电网调度、抢修的地理背景信息的展示。
总之,信息平台与各业务系统的信息交互应遵循配电自动化信息交互系列规范,只有在业务流、信息流规范的前提之下才能保障信息集成的良性发展。
D5000平台作为生产大区、管理大区诸多业务系统的支撑平台,提供了统一、安全、健壮的信息交互手段,如消息总线、服务总线、消息邮件等,其中消息邮件功能已成为调度不同平台、跨区业务系统间业务流转不可缺少的手段。配电网调度控制系统与其他业务系统的信息交互应充分利用平台成熟的通信技术。
1.4二次安全防护技术
配电终端与调度控制系统的通信采用单向认证防护技术,使用基于非对称加密技术的单向身份认证措施,实现控制和参数设置数据报文的完整性保护和主站身份鉴别,同时添加时间标签(或随机数)保证控制数据报文的时效性。配电网前置采集配置安全模块,对下行控制命令与参数设置指令进行签名,实现子站/终端对调度控制系统的身份鉴别与报文完整性保护。
配电终端(DTU/FTU/TTU)、故障指示器等通过无线公网经通信运营商接入配电网调度控制系统,需采用必要的安全防护措施,并穿越经国家指定部门认证的正反向隔离装置。
2关键技术的分析与应用
2.1配电网大数据量采集
与调度自动化系统相比,配电自动化系统的数据采集存在以下特点:①配电网数据采集量大,采集频率较低,中型系统采集量已超过20万点;②主站与终端设备直接通信,通信链路数随监控设备增加而大幅增加;③存在基于公网的数据采集;④系统的典型部署模式是地县一体。
针对配电网多通道、多链路、频率低的特点,配电网前置采集通道连接处理机制上采用epoll的多路复用I/O接口技术,设定线程池,配置若干工作线程统一处理所有通道。
epoll是为处理大批量句柄而加以改进的poll,是Linux 2.6下性能最好的多路I/O就绪通知技术。
epoll技术提高了程序在大量并发连接中只有少量活跃的情况下系统CPU的利用率,同时其边沿触发(edge-triggered,ET)技术显着提高了采集程序的处理效率。
D5000平台目前正开展分布式数据采集功能的研发,可有效解决配电网采集数据量大带来的效率问题,并更加符合地县一体化部署的要求。该功能将集群技术、网格技术运用到配电调度控制系统的数据采集中,对数据采集功能进行分区域设置,将整个采集系统分割成若干个数据采集子系统,各区域协同工作,共同完成数据采集工作。每个数据采集子系统有自己独立的若干数据采集服务器和采集设备,子系统内的数据采集服务器采用集群方式管理。
正常运行状态下,各数据采集子系统协同平台完成整个系统的监控功能。当地、县级区域间的主干网络故障发生系统解列时,成为孤岛的县调子系统可独立完成县级配电网监控功能。
分布式数据采集功能的研发将大大增强系统大数据量的处理能力,并使得系统具备很强的扩展性和可靠性。
2.2馈线自动化技术
主站实现的馈线自动化是集中式馈线自动化,它借助通信手段,通过配电终端和配电主站/子站的配合,在发生故障时依据终端设备采集到的故障信号判断故障区域,并通过遥控或人工隔离故障区域,恢复非故障区域供电来提高供电可靠性。馈线自动化技术作为配电网自动化的关键技术,近年来已取得了大量的研究成果[9-13]。但配电网实际运行情况复杂,馈线自动化技术的实用化还需要解决一系列问题。
馈线终端、配电自动化设备及通信网络的运行环境恶劣,漏报或错报故障信号的现象频发,故障定位功能需要从以下两个方面加以完善:一方面详细记录所有故障信号的发生时间、先后顺序;另一方面结合信号对应终端的通信状态、历史数据质量情况,分析出可能的漏报或误报信号。
由于恶劣天气导致的大面积停电或多区域停电,严重影响了配电网供电可靠性。为了尽可能降低停电损失,馈线自动化提供的解决方案应考虑以下几个方面。
1)将故障按所在环网进行分组,以组为单位计算隔离与恢复方案,解决同一环网发生多点故障时,可能无法直接通过相邻联络馈线恢复健全区域供电问题。
2)恢复健全区域供电时,将负荷按重要性分出优先级,根据负荷的分布情况结合各馈线的线损、负荷预测、负荷的优先级及检修保电状态等数据给出操作步骤最少、削减负荷优先级低、削减负荷数最少的方案。
3)在故障恢复过程中若发生新的故障,分析新故障对正在处理故障的影响,动态调整优化故障处理方案。
2.3 GIS应用技术
配电网调度控制和抢修业务的一个显着特点是实现电网运行监控、操作控制、抢修作业空间可视化。电网GIS平台对外发布辖区内地理背景信息、电网空间信息、电网拓扑信息等三大类信息。
GIS平台地理背景信息采用金字塔切片方式或与电网空间信息封装成控件方式对外发布;电网空间信息采用矢量图形方式或电网栅格方式以及地理背景信息封装成控件方式对外发布;电网拓扑信息的模型采用CIM、可缩放矢量图形(SVG)的方式对外发布。
目前GIS在电网运行监控及抢修方向的应用主要有两种方式:一是采用GIS平台提供控件方式;二是地理背景资源使用GIS平台提供的切片或测绘机构航拍图,而电网设备走径由自动化人员手工绘制。由于这些方式存在扩展性能差、无法展现设备实时运行状态或重复建设、维护量大、出错率高等弊端,因此实用化程度不高。
配电网调度控制系统提出“瘦”空间数据库、“瘦”引擎理念,结合实时数据,集成GIS平台资源,封装成适合调度监控类的GIS应用组件。
GIS平台空间数据库存储地理资源空间信息、电网空间信息、电网拓扑信息,通过GIS平台引擎把这三大类信息渲染形成矢量图形,并可把矢量图形切分成金字塔切片及电网栅格。考虑到地理背景类资源容量大、变更少、基于该类信息应用少,而电网空间信息及拓扑类信息容量相对小、异动频繁、基于该类信息应用较多,配电网调度控制系统直接使用GIS平台渲染后的地理背景切片,而电网空间信息采用接口方式接入设备经纬度及拓扑关系,并把这些关系存储在“瘦”空间数据库中,“瘦”引擎管理GIS平台提供的切片及“瘦”空间数据存储的电网空间信息,并融入实时采集信息,最终通过“瘦”引擎管理并发布。其中“瘦”空间数据库不包含地理背景空间信息,“瘦”引擎使用GIS平台切片,但不直接渲染地理背景切片。因此,系统的空间数据库及引擎的容量、管理范围大幅缩减,减小了系统复杂度及管理难度。技术框架如图2所示。
2.4配电网分析应用软件
配电网分析应用软件的特点是要对大量实时数据进行处理与分析,以确定电力系统的安全与经济状况,给出电网经济运行优化的控制策略。鉴于目前配电网相对于输电网而言网络结构稳定性差、模型参数不完备、量测数据采集不齐全,配电网分析应用软件的实用化仍是关注重点。据此,可以开展以下几个方面工作。
1)改善配电网量测质量。配电网量测要从空间维度、时间维度两方面来完善:空间维度要提高数据覆盖面,时间维度要了解未来变化的趋势。利用电量数据及其负荷短期预测功能弥补实时采集数据量测不足是当前一个行之有效的方法。
10kV配电变压器及其低压用户的电量信息来自于用电采集信息系统(简称“用采系统”)。Ⅰ区调度控制相关应用功能重点关注10kV配电变压器准实时量测信息,用采系统负责主动将准实时信息推送到总线上;Ⅲ区低压故障研判功能依赖低压用户量测信息,系统将针对部分用户主动发出召测请求。对于非实时的低压配电变压器量测,还需要利用配电网开关的实时量测数据进行检验,将一些无法采集到的配电变压器量测进行补全。负荷预测模块则根据负荷分类曲线构造实时负荷数据模型,充分利用历史电量信息,预估当前、未来电量,补全实时负荷量测断面数据,提供未来负荷趋势数据。在提高了电网可观性的基础上再进行潮流计算,得到的潮流分布和网损信息为其他配电网应用(网络重构、馈线自动化、短路电流计算等)提供数据分析依据。
2)提高应用软件的局部网络分析应用能力,减小馈线间或馈线各区域间数据质量差异的影响,综合提高各应用软件的计算速度、计算精度和收敛性能。以潮流计算为例,由于配电网规模庞大、支路节点众多,对整个配电系统(或馈线)进行潮流计算会导致计算的维数较高,计算的存储量迅速增加。而且由于通常无法获得完整、准确的配电网结构参数和配电变压器负荷信息,要想对整个配电系统(或馈线)进行潮流计算,无论是在计算精度、计算速度、数据存储量上都不能很好地满足要求。因此,可根据配电网结构和量测点分布将馈线进行分区,对于数据完整的区域进行精确详细计算,对于数据完整度较低的区域进行近似等值计算。
3)将分析应用软件与配电网的日常运行、操作紧密结合,在使用中提高应用软件的实用性。负荷预测和潮流计算应成为常态化的运行软件,电网日常操作中可根据计算结果判断当前电网的状态,并对开关操作的合理性进行校验。
3新能源接入带来的思考
分布式电源/微网/电动汽车等的接入是智能配电网发展的必然趋势,大量分布式电源接入配电网以后,电源模型的多样化及运行方式的复杂化将会对配电网调度控制系统带来深刻影响,对系统的运行监控、故障处理以及协调控制技术提出新的要求。
在运行监控技术方面,首先要考虑的就是具备对分布式电源公共连接点和并网点的模拟量、状态量及其他数据的采集,并对采集的数据进行计算分析、越限告警等,同时具备对受控条件的分布式电源的公共连接点、并网点开关实现分合控制功能,可实现分布式电源的投入/退出。当分布式电源端具备有功功率、电压调节功能时,系统根据需要可下发相应的功率、电压调节指令。
受新能源接入的影响,馈线自动化各阶段的处理策略都将有所调整。分布式电源/微网对配电网的短路电流、保护设置和故障信号会产生影响,需要对传统的故障定位技术进行改进和优化[14];故障隔离时,如果故障区段有相连的分布式电源/微网,需要判断该分布式电源/微网是否可以实现计划孤岛方式运行;配电网故障停电后,分布式电源/微网会全部自动与配电网断开,故障恢复时,需要综合考虑负荷优先级、负荷数量以及分布式电源容量,研究满足馈线负载约束的停电影响最小、网损最小和馈线备用容量最优的故障恢复策略。
在配电网应用分析方面,由于分布式电源/微网等分布式发电装置改变了传统配电网辐射型的网络结构,需要研究与之相适应的新的潮流计算和状态估计等分析算法。在协调控制方面,大规模电动汽车接入电网可以在负荷高峰时作为储能元件向电网放电,负荷低谷时作为负荷从电网充电,并与间歇性分布式电源互补,因此,有必要研究分布式电源与电动汽车的协同调度技术,充分发挥新能源对电网的削峰填谷作用。
4结语
本文对配电自动化建设的现状及其存在的问题进行了总结分析,结合配电网调度机构业务新需求,提出了大运行体系下配电网调度控制系统技术方案。针对D5000平台的实现,探讨了配抢一体、信息集成和应用功能实用化等关键技术,并预测了新能源接入给系统软件带来的考验,提出了分布式电源接入研究的必要性和紧迫性。基于D5000平台的配电网调度控制系统已在现场投运,部分关键技术已得到验证。配电自动化建设是一项长期、艰巨的工作,其中实用化技术已成为当前的用户和厂家关注的焦点,根据业务需求和一、二次配电网建设,Ⅲ区和Ⅳ区外部系统建设的客观情况,本文讨论的各项技术仍需要进一步改进和完善。
参 考 文 献
[1]陈竟成,张学松,于尔铿.配电管理系统(DMS)及其应用功能[J].电力系统自动化,1999,23(18):45-48.CHEN Jingcheng,ZHANG Xuesong,YU Erkeng.Distributionmanagement system and its application functions[J].Automation of Electric Power Systems,1999,23(18):45-48.
[2]姚建国,周大平,沈兵兵,等.新一代配电网自动化及管理系统的设计和实现[J].电力系统自动化,2006,30(8):89-93.YAO Jianguo,ZHOU Daping,SHEN Bingbing,et al.Designand implementation of a new generation distribution automationand management system[J].Automation of Electric PowerSystems,2006,30(8):89-93.
[3]刘海涛,赵江河,苏剑.基于ESB的配电网自动化及管理系统信息集成[J].电力系统自动化,2008,32(16):47-51.LIU Haitao,ZHAO Jianghe,SU Jian.ESB based informationintegration of distribution automation and management system[J].Automation of Electric Power Systems,2008,32(16):47-51.