西洋参(Panax quinquefolium L.)为五加科人参属多年生重要的栽培药材,在田间生产中连作障碍十分严重,重茬栽种西洋参在第 2 年以后存苗率降至 30%以下。西洋参原产北美洲,我国适宜栽培西洋参地区仅限于吉林、辽宁、河北、山东等省的少数地区,连作障碍大大制约了西洋参产业的可持续发展。引起西洋参连作障碍的因子除了病原菌积累、土壤养分失调及物理性状改变外,近年来发现化感作用也是重要原因之一。化感作用(Allelopathy)是指一种植物(供体)通过向环境释放化学物质而对另一种植物或微生物(受体)所产生的直接或间接作用。已有报道表明 p-香豆酸广泛存在于小麦、油松、毛白杨等多种植物根内并可分泌至土壤中,从而对他种植物或自身的生长产生化感/自毒作用,进而导致自然生态群落中植物结构变化或林木和农作物连作障碍。本课题组前期研究发现,在以滤纸片为基质的种胚生长实验中,西洋参须根中含有的 p-香豆酸显著抑制自身胚根生长,推测 p-香豆酸是西洋参自毒中起到重要作用的化感物质。
Kaur 等报道在植物自然生长环境中,土壤能够对化感物质的活性产生干扰,导致化感作用强度发生改变,虽然目前检测到 p-香豆酸在北京地区种植西洋参的土壤中含量为 0.462—0.985 mg/g,达到产生化感活性的浓度,但土壤中是否对西洋参种胚生长产生化感作用仍缺乏直接证据。另外,西洋参为宿根草本植物,生产上多采用育苗 2 年后倒栽的种植方式,那么明确 p-香豆酸是否对成株西洋参也具有自毒作用对于指导生产就有重要意义。如果对成株西洋参没有抑制作用或作用较低,则可以考虑老参地用于西洋参苗的移栽连作,在理论上有助于探明多年生植物随着生长年限的增加对化感物质的敏感性差异。
基于以上问题,本实验以前期测定的老参地土壤 p-香豆酸含量为试验设计依据,采用土壤基质进一步明确 p-香豆酸在土壤自然环境中对西洋参种胚生长的影响;并选择 2 年生西洋参种根,通过水培试验探讨p-香豆酸对成株西洋参生长的直接作用及其生理机制。
1、 材料和方法
1.1 植物材料
供试的西洋参种子由北京天惠药业西洋参公司提供,种子已完成后熟。2 年生出苗前的西洋参种根于2010 年 4 月采于北京市延庆区古城镇西洋参种植基地,采回后 1—3 d 进行试验,选取长度、直径和重量接近的参根随机分为 4 组,用 SPSS17.0 软件对根重进行方差分析,表明各处理组间根重无显著差异。
1.2 仪器和试剂
分光光度计(上海精密科学仪器有限公司,757CRT)、LI-6400/XT 便携式光合作用测定装置(LI-COR 公司,美国)。p-香豆酸(分析纯)购自 Alfa Aesar 公司。其他试剂均为国产分析纯。
1.3 西洋参种胚生长实验
于北京市药用植物研究所实验田采集未种植过西洋参的土壤,土壤基础肥力为碱解氮 64.01 mg/kg,速效磷 35.45 mg/kg,速效钾 181.97 mg/kg,有机质 1.49%,全磷 0.0804%,全氮 0.0922%,pH6.85,采回后当天开展实验。称量 50 g 土壤放置于 9 cm 培养皿中,添加 15 mL 不同浓度的 p-香豆酸水溶液,添加量参照老参地土壤中 p-香豆酸的自然浓度(0.462—0.985 mg/g)设计浓度梯度,最终浓度分别为 0.0024 mg/g、0.012 mg/g、0.06 mg/g、0.3 mg/g、1.5 mg/g、7.5 mg/g,以添加相同体积蒸馏水处理作为对照。选取刚刚萌发且长势基本一致的西洋参种子,用 5%次氯酸钠溶液进行表面消毒后放置于土壤上层,每个培养皿中 10粒种子,每处理设 5 个重复。25 ℃恒温培养 7 d,用直尺测量胚根和胚芽长度。
1.4 西洋参种根水培实验
1.4.1 试验设计
水培试验采用 1000 mL 陶瓷罐于温室中进行。营养液组成:硝酸钾 2.5 mg/mL,硫酸铵 2.5 mg/mL,氯化钙 3 mg/mL,磷酸二氢钾 2 mg/mL,硫酸镁 2 mg/mL。西洋参种根于蒸馏水中适应培养 10 d 后开始试验。以前期本实验室对西洋参根际土壤中 p-香豆酸含量测定结果为依据,浓度设计考虑水培条件下参根与目标化合物接触更充分而适当降低,添加 p-香豆酸的终浓度分别为 0.012 mg/mL、0.06 mg/mL、0.3 mg/mL,以全营养液作为对照。每个处理设 5 个培养罐平行操作,每罐 4 株植株。温度控制在 20—25 ℃,每天通气约 8 h。西洋参在水培体系中 30 d 内即可完成从展叶生长到开始结果的生长周期,因此培养期设为 30 d。
1.4.2 西洋参植株的生长指标测定
试验开始后每隔 5 d 测定各处理组每株西洋参植株的叶片展开情况(用展叶率表示,展叶率=展开叶片植株数/总植株数)、株高、冠幅(为植株地上部分水平直径的平均值)等生长指标;并于生长 10 d(展叶期)、20 d(现蕾期)和 30 d(结果期)时从每个培养罐中随机取 1 株,测定植株地上部分及新生须根生物量。
1.4.3 西洋参植株叶片光合特性测定
西洋参植株生长 15 d(展叶后期)时,采用 LI-6400/XT 便携式光合作用测定装置测定完全展开叶片的光合特性参数,采用开放式气路,选择上午 10:00—12:00 测定主要光合参数,环境 CO2浓度为 450—550μmol/mol,光合有效辐射为 100 μmol/(m2·s),记录净光合速率(Pn)、表观电子传递速率(ETR)。当晚天黑后将培养室遮光,植株暗适应 4—5 h 后,于凌晨 0:00—2:00 测定植株最大光化学效率(Fv/Fm)。每个处理重复 5 次。
1.4.4 西洋参须根中苯丙氨酸解氨酶(PAL)活力测定
于西洋参生长 10 d(展叶期)、20 d(现蕾期)和 30 d(结果期)时从每个培养罐中随机取 1 株,参考李合生的方法分别测定新生须根 PAL 活力和蛋白质含量。具体方法:称取 0.5 g 须根,研磨制备粗酶液,将 0.4mL 酶液、1 mL 0.02 mol/L 苯丙氨酸和 8.6 mL 0.05 mol/L 硼酸盐缓冲液混匀,对照以蒸馏水代替酶液作为空白,反应液置于恒温水浴 30 ℃中保温 1 h,用分光光度计在 290 nm 处测定吸光度;蛋白质含量测定采用考马斯亮蓝法。每个样品做 3 次平行操作,以每小时在 290 nm 处吸光度变化 0.01 所需酶量为 1 个单位(U)。
1.5 数据处理
利用 SPSS17.0 软件进行方差分析和 Dunnett-t 检验。
2、 结果与分析
2.1 p-香豆酸对西洋参种胚生长的影响
与未添加 p-香豆酸的对照组相比,土壤中添加 0.0024 mg/g p-香豆酸处理 7 d 后西洋参胚根长度降低28.52%,0.012—0.3 mg/g p-香豆酸处理组胚根生长降低 34.55%—75.44%,达到显著差异水平(P<0.05),并呈现一定的剂量抑制效应,1.5 mg/g 和 7.5 mg/g p-香豆酸处理后西洋参胚根生长完全受到抑制(图 1)。
土壤中添加 0.0024—0.06 mg/g p-香豆酸 7 d 后西洋参胚芽长度降低 1.09%—32.04%,0.3 mg/g 和 1.5mg/g p-香豆酸处理胚芽长度受抑制程度达到 59.13%和 63.39%,并与对照差异显著(P<0.05),7.5 mg/g 浓度下胚芽生长则完全受到抑制(图 1)。
2.2 p-香豆酸对西洋参植株生长的影响
水培溶液中添加 p-香豆酸能够显著抑制西洋参植株地上部分的生长,展叶率、株高、冠幅均明显下降(图 2)。在西洋参生长的各个时期,随着添加浓度增加,p-香豆酸对展叶率、冠幅及株高的抑制强度逐渐增加,并表现出一定的浓度效应。与对照组相比各处理组植株展叶时间明显推迟,0.3 mg/mL 浓度处理组最终仍有 85%植株叶片不能完全伸展。由于处理组叶片不能完全展开或叶片面积小,植株冠幅低于对照组,0.06 mg/mL 处理组 15—20 d 时,植株冠幅低于对照 35.43%和 34.90%,且达到差异显著水平(P<0.05);当添加浓度提高至 0.3 mg/mL 时,在培养期内只有 1—2 株植株展叶,冠幅在 6 个采样时间点上分别比对照低 16.61%、30.58%、47.24%、43.99%、33.79%和 28.10%,均达到显著水平(P<0.05)。在 30 d 的培养期内,所有浓度的 p-香豆酸处理组植株株高均低于对照组,0.3 mg/mL 处理组各生长阶段植株株高均显著降低(P<0.05),30 d 时株高比对照低 57.52%(P<0.05)。
从植株生长量上看,所有 p-香豆酸处理组的地上部鲜重均低于对照组,p-香豆酸浓度在 0.06 mg/mL以上时,处理组在结果期以前(10—20 d)植株地上部鲜重明显降低(P<0.05),浓度为 0.3 mg/mL 时,处理组10—30 d 植株地上部鲜重比对照分别降低 62.75%、81.28%、54.55%,且达到显著水平(P<0.05,表 1)。
对于新生须根的生物量,在西洋参展叶期(10 d),与对照相比 0.012 mg/mL、0.06 mg/mL p-香豆酸处理组比对照分别增加 22.67%、14.67%,0.3 mg/mL 处理组降低 20.00%,但差异均不显著(P>0.05);生长至现蕾期(20 d)时,3 个浓度的 p-香豆酸处理组须根生物量均低于对照,分别降低 25.33%、33.33%、41.33%,但未达到显著水平(P>0.05);结果期时(30 d)各浓度 p-香豆酸处理组须根的生物量均与对照接近(P>0.05,表1)。
2.3 p-香豆酸对西洋参植株光合特性的影响
与对照相比,0.012 mg/mL、0.06 mg/mL 和 0.3mg/mL p-香豆酸处理后西洋参植株叶片的 Pn 值下降41.58%、64.74%和 70.53%,p-香豆酸浓度在 0.06 mg/mL 以上时,与对照组差异达到显著水平(P<0.05)。0.06mg/mL p-香豆酸处理后 ETR 显著下降 5.45%(P<0.05)。p-香豆酸各浓度处理组植株 Fv/Fm 与对照无变化(表2)。
2.4 p-香豆酸对西洋参根 PAL 酶活力的影响
与对照相比,展叶期(10 d)0.012 mg/mL p-香豆酸处理后西洋参植株 PAL 酶活力略有降低,0.06 mg/mL处理组增加 69.05%,浓度增加至 0.3 mg/mL 又比对照降低 80.06%,但均未达到显著差异水平(P>0.05)。在现蕾期(20 d)时,p-香豆酸在 0.06 mg/mL 浓度以上时对西洋参须根内 PAL 酶活力产生显著的抑制作用,与对照组相比 0.06 mg/mL 和 0.3 mg/mL p-香豆酸处理组 PAL 酶活力降低 60.04%和 66.67%,达到显著差异水平(P<0.05)。待西洋参生长到结果期(30 d),所有浓度的 p-香豆酸处理组 PAL 酶活力与对照相差不大,均没有显著差异(P>0.05,图 3)。
3、 讨论
在以往研究化感作用的报道中,多数并未给出化感物质浓度的设计依据,采用的添加浓度往往与环境中的实际浓度并不相关。本文所用的 p-香豆酸的浓度是依据田间土壤中的测定数据,并以土壤为基质,比较客观地反映了 p-香豆酸在田间对西洋参种胚的作用。实验室前期测定老参地中 p-香豆酸的含量为0.462—0.985 mg/g,考虑到土壤中化感物质分布不均的情况,在种胚生长实验中设计 p-香豆酸浓度为0.0024—7.5 mg/g。水培实验中考虑到化感物质与根接触更直接,采用低于田间实际的浓度,设计 0.012—0.3mg/mL 的 p-香豆酸添加量。
受土壤复杂环境的影响,来源于室内培养皿中以水和滤纸为基质的化感作用研究结果与土壤基质中的结果可能存在较大区别。我们的试验结果表明在土壤基质中 p-香豆酸对西洋参种胚生长具有抑制活性,与前期滤纸基质中的结果一致,但作用强度有所改变。在土壤中 p-香豆酸对西洋参种胚的胚芽生长抑制作用比在滤纸片中降低,土壤添加量达到 7.5 mg/g(按最大田间持水量 20%计算,浓度为 37.5 mg/mL)时抑制率方能达到 100%,而在滤纸片中 10 mmol/L(1.64 mg/mL)p-香豆酸即可完全抑制胚芽的生长;与之相反的是,p-香豆酸在土壤中对胚根的作用比在滤纸片中增强,浓度在 0.3 mg/g(按最大田间持水量 20%计算,浓度为 1.5 mg/mL)时抑制率就高达 75.4%,而在滤纸片中浓度为 1.64 mg/mL 的 p-香豆酸也只表现出 63.4%的抑制率。p-香豆酸在土壤基质中作用强度的改变可能与土壤对化感物质的吸附、转化、微生物的降解等作用有关,新生成物质对植物的化感活性改变。孔垂华等报道胜红蓟植株释放的主要化感物质胜红蓟素在土壤中发生结构转化,既可聚合为对花生和黑麦草没有生物活性的二聚体,也可分解为甲氧基取代苯甲酸,对这两种植物的化感活性比胜红蓟素自身更强。
对于存在连作障碍的多年生作物来说,自毒物质对成年植株是否有毒性鲜有报道,本实验采用水培方式研究 p-香豆酸对西洋参种根生长的作用以及生理机制,其优势在于排除田间土壤复杂环境对化感作用的影响,可以在控制条件下研究化感物质的直接作用。结果表明添加 p-香豆酸后西洋参植株展叶推迟,高浓度时(0.3 mg/mL)约 85%叶片不能完全展开,叶片生长受到严重抑制,导致植株光合面积大大下降。另外,p-香豆酸处理组叶片 Pn 和 ETR 均降低。因此,本文推测植株光合面积减少以及光合反应受抑制是 p-香豆酸抑制西洋参生长和生物量积累的重要原因。Blum 等报道 0.5 mmol/L(0.082 mg/mL)p-香豆酸处理黄瓜幼苗后,叶片在 1 d 内的展开面积比对照降低 71%,认为是 p-香豆酸影响黄瓜生长的原因之一;Yu 等报道水培体系中0.25 mmol/L(0.041 mg/mL)的p-香豆酸处理6 h后黄瓜幼苗叶片的Pn值比对照降低69.64%,本文中 p-香豆酸对成株西洋参生长产生化感作用的机制与以上报道一致。田间土壤中,由于可能存在生物和非生物因子影响化感物质活性,p-香豆酸对成株西洋参苗的实际作用还应通过进一步的土壤实验进行验证。
PAL 是连接初级代谢和苯丙烷类代谢、催化苯丙烷代谢途径的关键酶和限速酶,对于植物抗逆反应具有重要生理意义,由于植物用于防御的能量和物质是有限的,PAL 激活耗能可能在一定程度上影响植物的生物量积累。PAL 活力上升通常发生在植物遭遇机械损伤、病原物侵染等逆境胁迫的早期,随胁迫时间延长,植物上调的 PAL 活力往往降低至正常水平甚至更低,同时植株生物量往往由于逆境的影响在后期有所下降。杨立报道黄瓜接种枯萎病菌(Plectosphaerella cucumerina)、大丽轮枝菌(Verticilliumdahlia)1 d 后根中 PAL 活性迅速升高,在 5 d 达到峰值,而地上、地下部的生物量在处理 7 d 时表现出降低。
本文中0.012 mg/mL p-香豆酸处理组在10—30 d西洋参须根的生物量及PAL活力与对照相比均无显著差异(P>0.05),说明此时没有达到活性浓度。当浓度增加到 0.06 mg/mL 时,处理 10 d 的 PAL 活力比对照增加69.05%,表明此时西洋参根系受到胁迫因素的影响,但须根生物量并未表现出降低,推测西洋参植株的防御反应可能处在被诱导的早期阶段;20 d 时 PAL 活力显著低于对照(P<0.05),这种现象与王海波在构建的植物应激反应动态模型中的发现一致,即 PAL 等表征应激反应的关键酶在植物受胁迫后并不是一直升高,而是表现出波浪状的动态变化。当 p-香豆酸浓度提高到 0.3 mg/mL 时,10—30 d 内须根 PAL 活力和生物量均比对照降低,说明该浓度下西洋参受胁迫的程度加重,生长已受到抑制。对照及所有处理组植株培养至30 d 时,西洋参已经结果,表明生长已处于生育期的后期阶段,此时植株的生长力开始减弱,须根有腐烂和脱落的现象,从而导致须根的生物量均比 10—20 d 时下降,此时对照及所有 p-香豆酸处理组 PAL 活力也均比 10—20 d 时降低。