4. 2 棉花地土壤含水量检测控制试验。
将本系统运用于棉花田,设置土壤含水量阈值为20% ~ 35% ,监测并控制土壤水分,土壤水分变化图如图 2 所示。
试验表明: 系统工作状态良好、运行稳定,可适应不同土壤环境的水分控制,能随着土壤湿度的变化而动作,达到了将土壤湿度自动控制在设定范围内的目的。
5 结论。
在我国当前的农业大环境下,无线传感器网络技术在土壤水分监测和控制中的应用还处于初级阶段,实际推广运用范围偏小,与国外发达国家相比,技术相对落后[4].因此,在物联网实际运用的设计中,需要根据国农业生产经营的实际情况,充分考虑实用性和可推广性。
本文设计了基于 RHD - 100 土壤水分传感器、射频芯片 CC2530、MSP430 F149 单片机、步进电机、及上位机软件系统的土壤含水率监测及灌溉控制系统。试验表明: 系统工作稳定可靠,可有效地检测土壤水分并通过控制步进电机动作实现自动灌溉,将土壤水分控制端设定范围内,具备一定的准确性和广泛的适应性。
参考文献:
[1] 邢志卿,付兴,房骏,等。 物联网技术在现代农业生产中的应用研究[J]. 农业技术与装备,2010( 8) : 16 -17,20.
[2] 赵养社。 基于无线传感器网络和 GPRS 网的灌溉系统研究[J]. 安徽农业科学,2011( 7) : 4203 -4206.
[3] 赵荣阳,王斌,姜重然。 基于 ZigBee 的智能农业灌溉系统研究[J]. 农机化研究,2016,38( 6) : 244 -248.
[4] 许世卫。 我国农业物联网发展现状及对策[J]. 中国科学院院刊,2013,38( 6) : 686 -692.