石墨烯的特性及其调制方法(4)
来源:中国光学 作者:陈勰宇;田震
发布于:2017-03-30 共13134字
6石墨烯表面等离激元
石墨烯还具有一个非常引人瞩目的特性,就是石墨烯可以支持太赫兹波到红外波段的表面等离激元。表面等离激元学是光子学的一个重要分支,近些年来受到了越来越多的关注,这是因为其在超材料、生物传感、光电池器件等领域都有着非常重要的应用。传统的用于支持表面等离激元的材料一般为贵金属材料,如金、银等,但是随着频率的降低,特别是在红外和太赫兹波段,金属表面等离激元的束缚会变得越来越弱,损耗也会越来越大,而在这一波段,石墨烯表面等离激元具有光场束缚更强和损耗较小的优势,并且石墨烯本身还可以通过电压和光泵等方式进行调制,这也为实现可调表面等离激元器件奠定了基础,因此研究太赫兹波段的石墨烯表面等离激元是非常有意义的[42].
通过将石墨烯制成不同的结构,可以更加容易地实现表面等离激元的激发,最典型的如线栅型结构和圆盘状结构等。利用这种方法,科学家们成功地实现了从红外[43-44]到太赫兹波段[45]的石墨烯表面等离激元器件,这些研究使利用石墨烯表面等离激元器件来制作太赫兹波段的调制器件成为可能。2015年,Peter Q. Liu等人将石墨烯带结构与金属谐振结构相结合,利用金属谐振模式与石墨烯表面等离激元模式的耦合,实现了对于太赫兹波的动态调制,如图9所示[46].在实验中,受到石墨烯质量的限制,器件在调制幅度上仍然比较有限,因此还有这较大的提升空间,这一成果也为利用石墨烯表面等离激元制作太赫兹调制器件提供了新的思路。石墨烯表面等离激元有望在太赫兹幅度调制器件、太赫兹吸收器件、太赫兹偏振器件等方向发挥更大的作用。
7结束语
综上所述,本文主要介绍了在太赫兹波动态调制器件中石墨烯材料的应用及调制机理,分析了不同动态调制石墨烯的方法,包括电调制、光调制、光电混合调制,及近年来利用不同调制方法,所实现的太赫兹波动态调制器件的优势与不足。当然,石墨烯的应用不仅仅局限在对太赫兹波的幅度调制上,利用其优良的光电特性,石墨烯也可以应用于其他的调制器件,包括太赫兹波可调制吸收体[47-48]、动态偏振调制器件[49]、可调制滤波器[50]等等。
尽管石墨烯在太赫兹波动态调制器件上有着非常广阔的应用前景,但是仍存在许多没有解决的问题,例如: (1) 受到石墨烯制作工艺的限制,石墨烯结构中会具有一定缺陷,达不到理论上的的电光性能,这在一定程度上限制了石墨烯太赫兹调制器件的发展; (2) 由于石墨烯本身电导率与频率有关,在调制的过程中,对不同频率的电磁波,电导率的变化情况并不完全相同,调制的幅度也就会存在一定的差别,这也在一定程度上限制了调制带宽; (3) 对于调制器件,人们往往期望其具有较大的调制幅度、很快的响应速度以及足够的调制带宽,然而从过去的研究中我们看到,这些往往是不能同时实现的。可见,要想将石墨烯调制器件应用在实际中,还有很长的一段路要走,为了实现这一目标,有必要在这一新兴的领域中开展更加广泛和深入的研究。
参考文献:
[1]FERGUSON B,ZHANG X C. Materials for terahertz science and technology[J]. Nature Mater,2002,1:26-33.
[2]SCHEMUTTENMAER C A. Exploring dynamics in the far-infrared with terahertz spectroscopy[J]. Chem. Rev.,2004,104:1759-1779.
[3]HANGYO M,et al. . Terahertz time-domain spectroscopy of solids:a review[J]. International J. infrared and MillimeterWaves,2006,12:1661-1690.
[4]TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photo.,2007,1:97-105.
[5] 蔡禾,郭雪娇,和挺,等。太赫兹技术及其应用研究进展[J].中国光学与应用光学,2010,3(3) :209-222.CAI H,GUO X J,HE T,et al. . Terahertz wave and its new applications[J]. Chinese J. Optics and Applied Optics,2010,3(3) :209-222.(in chinese)
[6] 许景周,张希成。太赫兹科学技术和应用[M].北京: 北京大学出版社,2007.XU J ZH,ZHANG X CH. Terahertz Science Technology and Applications[M]. Beijing:Peking University Press,2007.
[7]LI Q,ZHANG X,CAO W,et al. . An approach for mechanically tunable,dynamic terahertz bandstop filters[J]. AppliedPhysics A,2012,107(2) :285-291.
[8]CHIANG Y J,YEN T J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness,anexcellent conversion ratio,and enhanced transmission[J]. Applied Physics Letters,2013,102(1) :011129.
[9]WEN X,ZHENG J. Broadband THz reflective polarization rotator by multiple plasmon resonances[J]. Optics Express,2014,22(23) :28292-28300.
[10] 张检发,袁晓东,秦石乔。可调太赫兹与光学超材料[J].中国光学,2014,7(3) :349-364.ZHANG J F,YUAN X D,QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics,2014,7(3) :349-364.(in chinese)
[11]ZHELUDEV NI,KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials,2012,11(11) :917-924.
[12]FU Y H,LIU A Q,ZHU W M,et al. . A Micromachined reconfigurable metamaterial via reconfiguration of asymmetricsplit-ring resonators[J]. Advanced Functional Materials,2011,21(18) :3589-3594.
[13]SU X,OUYANG C,XU N,et al. . Active metasurface terahertz deflector with phase discontinuities[J]. Optics Express,2015,23(21) :27152-27158.
[14]SU X,OUYANG C,XU N,et al. . Broadband terahertz transparency in a switchable metasurface[J]. IEEE Photonics J.,2015,7(1) :1-8.
[15]SENSALE-RODRIGUEZ B,FANG T,YAN R,et al. . Unique prospects for graphene-based terahertz modulators[J]. Ap-plied Physics Letters,2011,99(11) :113104.
[16]ZHANG Y,FENG Y,ZHU B,et al. . Graphene based tunable metamaterial absorber and polarization modulation in tera-hertz frequency[J]. Optics Express,2014,22(19) :22743-22752.
[17]ANDRYIEUSKI A,LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber:effective surface con-ductivity approach[J]. Optics Express,2013,21(7) :9144-9155.
[18]ZHANG Y,TAN Y W,STORMER H L,et al. . Experimental observation of the quantum Hall effect and Berry's phase ingraphene[J]. Nature,2005,438(7065) :
[19]MAK K F,SFEIR M Y,WU Y,et al. . Measurement of the optical conductivity of graphene[J]. Physical Review Letters,2008,101(19) :196405.
[20]GEIM A K. Graphene:status and prospects[J]. Science,2009,324(5934) :1530-1534.
[21]CHEN P Y,AL A. Terahertz metamaterial devices based on graphene nanostructures[J]. IEEE Transactions on TerahertzScience and Technology,2013,3(6) :748-756.
[22]SENSALE-RODRIGUEZ B,YAN R,RAFIQUE S,et al. . Extraordinary control of terahertz beam reflectance in grapheneelectro-absorption modulators[J]. Nano Letters,2012,12(9) :4518-4522.
[23]SENSALE-RODRIGUEZ B,YAN R,KELLY M M,et al. . Broadband graphene terahertz modulators enabled by intrabandtransitions[J]. Nature Communications,2012,3:780.
[24]WU Y,LAOVORAKIAT C,QIU X,et al. . Graphene Terahertz modulators by ionic liquid gating[J]. Advanced Materi-als,2015,27(11) :1874-1879.
[25]KAKENOV N,TAKAN T,OZKAN V A,et al. . Graphene-enabled electrically controlled terahertz spatial light modulators[J]. Optics Letters,2015,40(9) :1984-1987.
[26]DEGL'INNOCENTI R,JESSOP D S,SHAH Y D,et al. . Low-bias terahertz amplitude modulator based on split-ring re-sonators and graphene[J]. ACS Nano,2014,8(3) :2548-2554.
[27]VALMORRA F,SCALARI G,MAISSEN C,et al. . Low-bias active control of terahertz waves by coupling large-area CVDgraphene to a terahertz metamaterial[J]. Nano Letters,2013,13(7) :3193-3198.
[28]HE X,LI T,WANG L,et al. . Electrically tunable terahertz wave modulator based on complementary metamaterial andgraphene[J]. J. Applied Physics,2014,115(17) :17B903.
[29]LEE S H,CHOI M,KIM T T,et al. . Switching terahertz waves with gate-controlled active graphene metamaterials[J].Nature Materials,2012,11(11) :936-941.
[30]GAO W,SHU J,REICHEL K,et al. . High-contrast terahertz wave modulation by gated graphene enhanced by extraordi-nary transmission through ring apertures[J]. Nano Letters,2014,14(3) :1242-1248.
[31]HI S F,ZENG B,HAN H L,et al. . Optimizing broadband terahertz modulation with hybrid graphene/metasurface struc-tures[J]. Nano Letters,2014,15(1) :372-377.
[32]CHEN C F,PARK C H,BOUDOURIS B W,et al. . Controlling inelastic light scattering quantum pathways in graphene[J]. Nature,2011,471(7340) :617-620.
[33]SHI S F,TANG T T,ZENG B,et al. . Controlling graphene ultrafast hot carrier response from metal-like to semiconduc-tor-like by electrostatic gating[J]. Nano Letters,2014,14(3) :1578-1582.
[34]LIANG G,HU X,YU X,et al. . Integrated Terahertz graphene modulator with 100: modulation depth[J]. ACS Photon-ics,2015,2(11) :1559-1566.
[35]SHI F,CHEN Y,HAN P,et al. . Broadband,spectrally flat,graphene-based terahertz modulators[J]. Small,2015,11(45) :6044-6050.
[36]MAO Q,WEN Q Y,TIAN W,et al. . High-speed and broadband terahertz wave modulators based on large-area graphenefield-effect transistors[J]. Optics Letters,2014,39(19) :5649-5652.
[37]WEIS P,GARCIA-POMAR J L,HO H M,et al. . Spectrally wide-band terahertz wave modulator based on optically tunedgraphene[J]. ACS Nano,2012,6(10) :9118-9124.
[38]WEN Q Y,TIAN W,MAO Q,et al. . Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports,2014,4.
[39]LI Q,TIAN Z,ZHANG X,et al. . Dual control of active graphene silicon hybrid metamaterial devices[J]. Carbon,2015,90:146-153.
[40]LI Q,TIAN Z,ZHANG X,et al. . Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications,2015,6.
[41]JIANG R,HAN Z,SUN W,et al. . Ferroelectric modulation of terahertz waves with graphene/ultrathin-Si∶ Hf O2/ Si struc-tures[J]. Applied Physics Letters,2015,107(15) :151105.
[42]LOW T,AVOURIS P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano,2014,8(2) :1086-1101.
[43]YAN H,LOW T,ZHU W,et al. . Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. NaturePhotonics,2013,7(5) :394-399.
[44]YAN H,LI X,CHANDRA B,et al. . Tunable infrared plasmonic devices using graphene/insulator stacks[J]. NatureNanotechnology,2012,7(5) :330-334.
[45]JU L,GENG B,HORNG J,et al. . Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology,2011,6(10) :630-634.
[46]LIU P Q,LUXMOORE I J,MIKHAILOV S A,et al. . Highly tunable hybrid metamaterials employing split-ring resonatorsstrongly coupled to graphene surface plasmons[J]. Nature Communications,2015,6.
[47]HU X,WANG J. High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene[J]. OpticsLetters,2015,40(23) :5538-5541.
[48]FARAJI M,MORAVVEJ-FARSHI M K,YOUSEFI L. Tunable THz perfect absorber using graphene-based metamaterials[J]. Optics Communications,2015,355:352-355.
[49]ZHU L,FAN Y,WU S,et al. . Electrical control of terahertz polarization by graphene microstructure[J]. Optics Commu-nications,2015,346:120-123.
[50]YANG K,LIU S,AREZOOMANDAN S,et al. . Graphene-based tunable metamaterial terahertz filters[J]. Applied PhysicsLetters,2014,105(9) :093105.
原文出处:陈勰宇,田震. 石墨烯太赫兹波动态调制的研究进展[J]. 中国光学,2017,01:86-97.
相关标签: