摘 要
水资源配置是根据特定地域水资源系统的自然和社会状态,采取一定的工程和非工程措施以及合理的管理体制对现有水资源的空间分布、开发利用以及水患防治系统进行改造、规划、设计、组合和管理,以期达到可持续发展的要求和水资源持续利用的目的。
本论文通过引入供应链管理理论,并结合都江堰灌区供水情况和水资源配置及水量控制情况,从理论上探讨了都江堰灌区的水资源分配模型。主要研究成果如下:
(1)都江堰灌区供应链的结构设计。通过引入供应链管理理念,界定了都江堰灌区供应链的内涵,对都江堰灌区供应链系统理论研究框架进行了简要说明,利用供应链结构设计方法—物流通道法对都江堰灌区供应链的结构特殊性进行较详细分析,明确该供应链与一般企业供应链的不同之处,对其运行机制进行简要讨论,指出都江堰灌区供应链是一个多级网状结构,并绘制其结构图;(2)建立模型。通过对都江堰灌区水资源利用现状的分析,初步提出灌区供应链中的各节点的构成情况,以经济效益、社会效益和生态效益为目标,建立目标函数,同时从供水能力约束、需水量约束、污染物排放的质量浓度及排放总量约束、非负约束及区域协调发展约束等五个方面提出配水模型的约束条件,并建立相关约束方程,以加强模型的有效性及计算准确性,由此得出都江堰灌区水资源优化配置的大系统多目标总体模型。(3)模型求解与有效性验证。按照模型的参数设置及算法优化,对模型进行求解,得出优化配置结果,为进一步验证建立的都江堰灌区供应链水资源优化配置模型的合理性,本论文综合遗传算法和模拟退火算法的优势,初步探讨利用模拟退火混合遗传算法的可能性,并通过收集设置相关模型参数对模型进行验证和分析。由分析结果可知,按照建立模型进行都江堰灌区水资源配置后可基本实现除农业用水稍有缺额外,其他用户的用水要求均可以得到满足,且在不同保证率情况下,农业缺水率均未超过5%,可通过利用高效节水措施、调整种植结构等方式,促使农业用水达到供需平衡,且实现了社会效益、经济效益及生态环境效益均有较明显的改善。
关键词 : 都江堰灌区;供应链管理;供水契约;物流通道法;水资源配置。
Abstract
Water resources allocation is based on the nature of a specific regional water resourcessystem and the social status, certain engineering and non-engineering measures andreasonable management system to the existing spatial distribution of water resources, thedevelopment and utilization of flood prevention and control system and reform, planning,design, combination and management, in order to achieve the purpose of the requirement ofthe sustainable development and sustainable utilization of water resources.
By introducing the theory of supply chain management and combining the situation ofwater supply, water resource allocation and water quantity control in Dujiangyan IrrigationArea, this paper theoretically discusses the water resource allocation model in DujiangyanIrrigation Area. The main research results are as follows:
(1) Structural design of supply chain in Dujiangyan Irrigation Area. By introducing theconcept of supply chain management, defines the connotation of supply chain in Dujiangyanirrigation area, and research framework of supply chain system in Dujiangyan irrigation areatheory has carried on the brief description, using the method of supply chain structure design,material circulation road in Dujiangyan irrigation area of the supply chain structureparticularity carries on the detailed analysis, clear the difference between the supply chainwith the general enterprise supply chain, its running mechanism is briefly discussed, pointsout that the supply chain in Dujiangyan irrigation area is a multi-stage network structure, anddraw its structure;(2) Establish the model. Through analyzing the current situation of water resourceutilization in Dujiangyan irrigation area, irrigation district has been put forward tocharacterize the composition of each node in the supply chain, with economic benefit, socialbenefit and ecological benefit as the goal, set up the objective function, at the same time fromthe water supply capacity constraint and demand constraint, pollutants mass concentration andtotal emissions, nonnegative constraints, and regional harmonious development constraints infive aspects, such as water distribution model of constraint condition, and establish the relatedconstraint equation, to strengthen the effectiveness of the model and the calculation accuracy,thus optimizing the allocation of water resources in Dujiangyan irrigation area of large systemoverall model.
(3) Model solution and validity verification. According to the parameter of the modeland algorithm, to solve the model, it is concluded that optimal allocation as a result, forfurther verification of the rationality of the model of supply chain optimization allocation ofwater resources in Dujiangyan irrigation area, this paper integrated the advantages of geneticalgorithm and simulated annealing algorithm, and discussed the possibility of using hybrid genetic simulated annealing algorithm, and by collecting set model parameters for validationof the model and analysis. The analysis result shows that, in accordance with the establishedmodel of Dujiangyan irrigation area water resources allocation is a basic implementation afterin addition to agricultural water deficiency is slightly, other users of water requirement can bemet, and under the condition of different reliability, are not more than 5% of agriculturalwater rate, can be adjusted by using efficient water-saving measures, planting structure,prompting agricultural water reach the balance between supply and demand, and realize thesocial benefit, economic benefit and ecological benefit were improved obviously.
Key Words : Dujiangyan Irrigation Area; Supply Chain Management; Water SupplyContract; Material Circulation Method; Allocation of Water Resources。
1、绪论
1.1、 研究背景及意义。
都江堰灌区位于四川省经济最发达的地区,主要担负着四川盆地中西部地区农田灌溉和城市生活、生产和生态用水的供给任务。随着社会经济的发展,都江堰灌区的需水量逐年递增,尤其是农业灌溉面积迅速增长。然而,整个灌区存在着水资源空间、时间上分布不均匀、水资源污染等问题,进一步恶化了灌区的供水情况,尤其是在农业用水高峰期水资源不足情况更为严重。
都江堰灌区存在严重的用水供需供矛盾问题。基于《四川省水资源综合规划》预测数据可知,预计2030年都江堰供水区总人数将会达到3126万人,城镇化率达到85%的水平。
2030年,在灌溉渠系续建配套和节水不断改造完善,在加上建成毗河灌区,供水区预计灌溉面积将达89.67万hm2,其中丘陵灌区33.86万hm2,平原灌区灌面可达41.77万hm2,毗河灌区设计灌面可达21.33hm2。通过全面分析了解到,当下都江堰供水区有82亿m3的总需水量,成都地区占50-60亿m3;2020年,当地供水区供水总量和需求总量基本持平,在2020-2030年阶段,供水区缺水问题会愈发明显。有预测表明,2030年毛需水约为174.59亿m3,岷江主水源供水量约95.86亿m3,水资源可利用总量为152.91亿m,届时年供水缺口总量大概是21.86亿m3。
都江堰灌区目前在水资源配置与水量控制方面的主要做法是,工作人员在年初基于以往气象、水文资料预测当年来水量,确定全年几个配水阶段的来水情况,并人工制定配水计划表。每个配水阶段都有适合其阶段自身特点的水量调度方案,在实际操作过程中依据实际来水量情况与经验,由操作人员人为进行动态调配以实现水量的动态配合。
这种以人工经验为主的方法主观性较大,配水效益主要依赖于操作人员的业务水平,且在来水量不足时期难以达到灌区水资源配置效益做优化,使得配水效益的长期稳定性较差,不能完全做到水资源的优化配置。
供应链管理坚持系统观念,提出在企业签订供货协议的基础上来保证“沟通与协调”作用能够得到充分发挥,各个企业业务运作协同结合后,可以实现供应链合作各方的共赢,使供应链整体的工作效率或Pareto达到最佳状态,而并非仅追求部分环节的亮眼表现。将供应链管理理念引入到都江堰灌区水量控制和水资源优化配置可以领相关工作更加高效、有序地开展。一来,基于供应链管理理念的思想引导,都江堰灌区水资源配置和调度管理在具体实践期间会更加强调“沟通与协调”,而不会再像以前一样只是着眼于整个工作体系的技术优化,这除了可以更好地控制用水量以外,还可以缓解因水资源短缺而引发的各种问题,促进水资源利用价值得到更好的发挥。有效保障农业经济效益,具有极大的社会意义与经济意义。另一方面,供应链管理理论在水资源优化配置中的实践应用也促进了其在理论与方法论上的不断进步。
【由于本篇文章为硕士论文,如需全文请点击底部下载全文链接】
1.2、 国内外研究现状
1.2.1、国外水资源优化配置研究现状
1.2.2、国内水资源优化配置研究现状
1.2.3、水资源优化配置发展趋势
1.2.4、供应链研究现状及发展趋势
1.3、研究主要内容和技术路线.
1.3.1 、研究主要内容
1.3.2、技 术路线.
2、都江堰灌区供应链系统分析,
2.1、都江堰灌区供应链理论框架研究
2.1.1 、都江堰灌区简介
2.1.2、都江 堰灌区供应链的内涵.
2.1.3、都江堰灌区供应链的基本理论研究框架.
2.2、都 江堰灌区供应链结构设计.
2.2.1、供应链的结构特点
2.2.2、供应 链结构设计的指导思想和原则.
2.2.3、供应 链结构设计方法
2.3、都江堰灌区供应链特征分析.
2.3.1、供应链结构特征
2.3.2、供应链运行的策略性原则.
2.4、本 章小结.
3、都江堰灌区水资源优化配置
3.1、灌 区水资源利用现状
3.1.1、渠首 工程简介.
3.1.2、灌区水源状况
3.1.3、 灌区供用水特点及功能分类
3.2、 水资源优化配置理论
3.2.1、配 置原则
3.2.2、配置 方式
3.2.3、优化配置 机理.
3.3、灌区水资源优化配置模型的建立.
3.3.1、目标函数.
3.3.2、约束 条件.
3.3.3、总体模型.
3.3.4、模 型特点分析.
3.4、本章小结
4、模型求解与有效性验证
4.1、模拟退火遗传 算法.
4.2 、都江堰灌区模型计算及分析.
4.2.1、研究 对象概况及分析,
4.2.2、参 数设置
4.2.2.1、模型参数设置
4.2.2.2、算法参数设置
4.2.3、配置结果及分析.
4.3、本章小结
5、结论
近年来,都江堰灌区来水量呈逐年下降趋势、相反由于灌区灌溉经济的发展及成都市整体GDP的提高需水量逐年增加,导致灌区水资源面临较大的短缺问题。基于此种社会背景,合理、科学地优化配置灌区有限水资源有着巨大的社会和经济意义。本文运用供应链理论,以都江堰灌区作为研究对象,参考一般供应链结构设计原则与方法,合理地绘制都江堰灌区水资源供应链结构图形;同时通过建立灌区水资源优化配置模型及实例分析初步探究了所建模型的合理性,主要得到以下结论:
(1)本文主要以供应链结构为主,通过物流通道法予以探究,并以都江堰灌区为研究对象,结合都江堰灌区多年平均来水量及成都市需水量等实际情况,在系统性、战略性等原则基础上,设计对应的供应链结构,并提出了多级网络结构供应链模型。
(2)通过对都江堰灌区水资源利用现状的分析,初步提出灌区供应链中的各节点的构成情况,并结合都江堰灌区的具体实际情况提出本文的配水模型构建思想,详细说明了建模的具体步骤、给出了模型的数学形式。
(3)为加强优化配置模型的有效性及计算准确性,提出了配水模型约束条件,具体包括非负约束、需水量约束等五方面内容,这是本文创新之处。
(4)经过重新优化配置后,都江堰灌区水资源供给除农业和工业用水部分不足外,其余均能够满足用水需求,同时,农业和工业用水在不同保证率下缺水程度均低于5%。
参考文献.
[1] Ren C, Zhang HA Fuzzy Max- -Min Decision Bi- Level Fuzzy Programming Model for Water Resources Optimization All ocation under Uncertainty[J] .W ater,2018, 10(4):488.
[2] Tu Y,Zhou X,Gang J,et al Administrative and market-based alocation mechanis .m for regi onal water resources pl anning[J] Resources,Conservati on and Recycling2015,95:156-173.
[3] Pedro-M onzonis M,Solera A Ferrer J,et al. A review of water scarcity and drought indexes in water resources planning and management[J].Joumnal of Hydrology,2015,527:482 -493.
[4] Nuonivaara Ted, Bjorkqvist Anna, Bacher John, Sema- Guerrero Ro dnigo Environmental remediation of sulfidic tailings with froth flotation: Reduaing the consumption of additional resources by optimization of conditi oning parameters and water recycling[J] Journal of environmental management,2019,236 .
[5]赵少军水资源优化配置研究进展[J]江西农业20 17(13).66-67.
[6]李雪萍国内外水资源配置研究概述[J]海河水利,2002(5):13-15.
[7] Norman J,Dudely Optimal Interpersonal Imigation Water Allocation W ater Resources, 1997.7(4),512-516.
[8] Wang H,Zhu J,Hu Z,et al. Water resources allocation and dispatch of South-to-North Water Transfer based on SCM[]//Haihe Water Resources 2004,23:3-8.
[9] Mou Siyu, Yan Jingjing, Sha JinghuaLi Shul e Ma Yufang.He Gengyu,Song Ci. Dynamic simulation of the optimal allocation of water resources via the intro duction of integrated water environmental policies in Baoding,China.[J] Environmenta1 science and pollution research internati omnal ,20 19,26(26).
[10] Kailong Li,Gordon Huang, Shuo W ang. Market-based stochstic optimization ofwater resources systems for improving drought resilience and economic efciency in anid regions[J]Jourmal of Cleaner Production2019,233.
[11] Xinxin Wang,Zeshui Xu,Xunj1e Gou Allocation of fresh water recourses in C .hina with nested prob abilistic-numerical lingui sti c informati on in multi- objective optimization[J] Knowl edge- Based Systems, 20 19.
[12] Du W,Fan Y,Tang X.Two -part pricing contracts under comp etition: the South-t0- North Water Transfer Project supply chain system in China[J] .Internati onalJournal of Water Resources Development, 2016,32(6):895-911.
[13] Tooraj Kho srojerdi, Seyed Hamed Moosavirad, Sh alhram Ariafar, Mahnaz Ghaeini-Hessaroeyeh. Optimal Allocation of Water Resources Usi nga Two-Stage Stochastic Programming Method with Interval and Fuzzy Parameters[J] Natural Resources Research,20 19,28(3).
[14] Siyu Mou,Jingjing Yan,Jinghua Sha,Shule Li, Yufang Ma,Gengyu He,Ci Song.Dynamic simulation of the optimal allocation of water resources via the introduction of integrated water envir onmental policies in Baoding. China[J] Environmental Science and Pollution Research, 201 9,26(26).
[15] Flach RRan Y,Godar J,et alTowards more spatally explicit ass essmnents of virtual water flows: linking local water use and scarcity to global demand of Brazi lian farming commoditi es[J] Environmental Research Letters2016,11(7): 075003.
[16] Cosgrove W J,Loucks D P.Water management: Current and future challengesand research directions[J] Water Resources Research,2015,51(6):4823-4839.
[17] Bekchanov M,Lamers J P A, Bhadun A_et al Input- output model -based water footprint indi cators to support IWRM in the irrigated dryl ands of Uzbekistan,central Asi a[M]Integrated Water Resources M anagement Concept, Rese archandImplementati on Springer,Cham,201 6: 147-168.
[18] Helmbrecht J,Pastor J,Moya C Smart solution to improve water energy nexusfor water supply sy stems[J] Procedia Engineering201 7,186:101-109.
[19] Nematian J An Extended Two- stage Stochastic Pro gramming Approach for Water Resources M anagement under Uncertainty[J] Joumal of Environmental Informatics, 2016, 27(2).
[20] Wu Z,Cao Q,Lv C,et al.Using a three-tier model to optimize the allocation of river water resources to meet eco -environmental water requirement targets[J].Water Science and Technology: Water Supply,2017,18(4):1222-1233.
[21] CAO Y,LI W,YUAN LThe Research Status on Optimized Allocation of Water Resources Based on Bibli ometrics in China[J] . Journal of North China University of Water Resources and E1 ectric Power (N atural Sci ence Edition),201 7(5):8.